Geotechnical Engineering Services - Revised

Alderwood South Lynnwood, Washington

for Wolff Enterprises II, LLC

January 5, 2018

Geotechnical Engineering Services - Revised

Alderwood South Lynnwood, Washington

for Wolff Enterprises II, LLC

January 5, 2018

17425 NE Union Hill Road, Suite 250 Redmond, Washington 98052 425.861.6000

Geotechnical Engineering Services - Revised

Alderwood South Lynnwood, Washington

File No. 12406-027-00

January 5, 2018

Prepared for:

Wolff Enterprises II, LLC 6710 East Camelback Road, Suite 100 Scottsdale, Arizona 85251

Attention: Andrew Hunt

Prepared by:

GeoEngineers, Inc. 17425 NE Union Hill Road, Suite 250 Redmond, Washington 98052 425.861.6000

Michael A. Gray, PE Geotechnical Engineer

Matthew W. Smith, PE Principal

MAG:MWS:nld

HEW W. SULLAR MASHIN CHAR STORAL ENGINE

Disclaimer: Any electronic form, facsimile or hard copy of the original document (email, text, table, and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Table of Contents

INTRODUCTION	1
PROJECT DESCRIPTION	1
FIELD EXPLORATIONS AND LABORATORY TESTING	1
Field Explorations	1
Laboratory Testing	1
PREVIOUS SITE EVALUATIONS	2
SITE CONDITIONS	2
Surface Conditions	2
Subsurface Conditions	2
Groundwater Conditions	2
CONCLUSIONS AND RECOMMENDATIONS	3
Earthquake Engineering	3
Liquefaction	3
2015 IBC Seismic Design Information	4
Excavation Support	4
Temporary Cut Slopes	5
Excavation Considerations	6
Shallow Foundations	6
Allowable Bearing Pressure	7
Settlement	7
Size and Embedment	7
Lateral Resistance	7
Construction Considerations	8
Deep Foundations	8
Pin Piles	8
Ground Improvement	8
Rigid Inclusions	9
Stone Columns and Rammed Aggregate Piers	9
Foundation Drains	10
Slab-on-Grade Floors	11
Subgrade Preparation	11
Design Parameters	11
Cast-in-place Walls	11
Drainage	12
Earthwork	12
Subgrade Preparation	12
Structural Fill	12
Utility Trenches	14
Recommended Additional Geotechnical Services	14
LIMITATIONS	.15
REFERENCES	15

LIST OF FIGURES

Figure 1. Vicinity Map Figure 2. Site Plan – Existing Conditions Figure 3. Site Plan – Proposed Conditions

APPENDICES

Appendix A. Field Explorations and Laboratory Testing Figure A-1 – Key to Exploration Logs Figures A-2 through A-8 – Log of Borings
Appendix B. Boring Logs from Previous Explorations
Appendix C. Report Limitations and Guidelines for Use

INTRODUCTION

This report presents the revised results of GeoEngineers, Inc.'s (GeoEngineers) due diligence evaluation of the Alderwood South project located at 2927 Alderwood Mall Boulevard in Lynnwood, Washington. The site is shown relative to surrounding physical features on the Vicinity Map (Figure 1) and the Site Plan (Figure 2).

The purpose of this report is to provide due diligence geotechnical engineering conclusions and recommendations for the site. The approximately 9.17-acre site consists of one Snohomish County Parcel (00372600100305) and is currently occupied by asphalt and gravel surfacing. GeoEngineers' geotechnical engineering services have been completed in general accordance with our services agreement executed on November 17, 2017. Our scope of work includes:

- reviewing existing subsurface information available for the site and surrounding area;
- completing explorations at the site to further characterize subsurface soil and groundwater conditions;
- providing preliminary recommendations for seismic design in accordance with 2015 International Building Code (IBC);
- providing preliminary recommendations for earthwork;
- providing preliminary foundation, slab-on-grade and permanent below-grade wall recommendations; and
- preparing this report.

PROJECT DESCRIPTION

We understand that Wolff Enterprises II, LLC is interested in conducting geotechnical due diligence prior to purchase of the subject property. Conceptual development plans show 11 buildings completed at grade with surrounding roadways/driveways, parking areas, and landscape areas. Foundation support may be completed by bearing on soils at foundation subgrade elevations, improved ground, or pin piles. Geotechnical site conditions and development considerations are presented below.

FIELD EXPLORATIONS AND LABORATORY TESTING

Field Explorations

The subsurface conditions at the site were evaluated by drilling seven borings, GEI-1 through GEI-7, to depths of approximately 2 to 21¹/₂ feet below existing site grades. The approximate locations of the explorations are shown in Figure 2. Descriptions of the field exploration program and the boring logs are presented in Appendix A, Field Explorations and Laboratory Testing.

Laboratory Testing

Soil samples were obtained during drilling and were taken to GeoEngineers' laboratory for further evaluation. Selected samples were tested for the determination of fines content, and moisture content. A description of the laboratory testing and the test results are presented in Appendix A.

PREVIOUS SITE EVALUATIONS

In addition to the explorations completed as part of this evaluation, the logs of selected explorations from previous site evaluations in the project vicinity were reviewed. The logs of explorations from previous projects referenced for this study are presented in Appendix B, Boring Logs from Previous Explorations.

SITE CONDITIONS

Surface Conditions

The site was previously used by the Edmonds school district for storage and maintenance of school buses. The site is currently surfaced with asphalt concrete pavement and gravel surface parking. The site grades are constant across the site, with elevations ranging between approximate Elevations 382 to 388 feet.

Numerous buried utilities are located within and near the project site and within the public right-of-way along the adjacent streets. These utilities include, but are not limited to, electrical, fiber optic, telecommunication, gas, buried and overhead power, water, sanitary sewer and storm drain.

Subsurface Conditions

The subsurface conditions at the site have been evaluated by completing seven geotechnical borings for the current study and review of existing geotechnical information completed at the project site. The approximate locations of the explorations are shown in Figure 2.

Borings as the site encountered between 1 and 9 inches of asphalt concrete pavement or gravel surfacing. The pavement was underlain by fill extending to depths between $4\frac{1}{2}$ and 13 feet below existing site grades. Fill observed in the borings consists of loose to medium dense sand with variable silt and gravel content. Boring GEI-7-17 met refusal on fill consisting of quarry spalls at an approximate depth of 2 feet.

Recent deposits were encountered in a select number of explorations below the ground surface (GEI-2-17) and fill (GEI-1-17 and GEI-3-17) and extended to between $9\frac{1}{2}$ and 13 feet below existing site grades. The recent deposits consisted of silty sand with variable gravel content, silt with sand and occasional gravel, and peat (GEI-2-17).

Glacially consolidated soils were encountered below the fill or recent deposits (where encountered) in each of the borings completed for this study, except for boring GEI-7-17. The glacially consolidated soils consist of dense to very dense silty sand with variable gravel content. The glacially consolidated soils extended to the depths explored in borings GEI-1-17 through GEI-6-17.

Although not encountered in our explorations, occasional cobbles and boulders are typically encountered in glacially consolidated soils and may be present at the site.

Groundwater Conditions

The borings completed at the site did not extend deep enough to encounter the regional groundwater table. However, shallow perched groundwater was encountered in borings GEI-1-17 through GEI-4-17, and GEI-6-17. The perched groundwater was encountered between depths of 3 and 10 feet in these borings. The perched groundwater is present within the fill and/or recent deposits overlying the less pervious

glacially consolidated soils. Groundwater conditions are anticipated to vary as a function of season, precipitation, and other factors.

CONCLUSIONS AND RECOMMENDATIONS

A summary of the primary geotechnical considerations is provided below. The summary is presented for introductory purposes only and should be used in conjunction with the complete recommendations presented in this report.

- The site is designated as either Site Class C or D per the 2015 IBC. The buildings should be analyzed on a case-by-case basis during design to determine the appropriate site class. Additional explorations are recommended to better characterize the Site Class. Site Class designations assume that building periods will be less than 0.5 seconds.
- Perched groundwater was encountered at approximate depths of 3 to 10 feet below existing site grades in the borings completed for this evaluation. Perched groundwater will require temporary dewatering for shallow excavations, such as utility trenches. For preliminary planning, casual dewatering by means of sumps and pumps is anticipated for temporary dewatering. Dewatering requirements are recommended to be further assessed during the design phase, particularly where deeper excavations are required (such as storm water facilities or deep utilities).
- Portions of the fill and recent deposits located below the perched groundwater level are potentially liquefiable. Potentially liquefiable soils are estimated to be present in approximately half of the site. Where present, potentially liquefiable soils will require special considerations for foundation support. The potentially liquefiable soils layer is limited in thickness, ranging up to approximately 15 feet thick. Estimated liquefaction induced ground settlements range up to approximately 5 inches for the design earthquake scenario.
- Shallow foundations are considered feasible where non-liquefiable soils are present. Where liquefiable soils are present, foundation options include: (1) shallow foundations bearing on improved ground, (2) pin piles, (3) shallow foundations bearing on partial or full-depth removal and replacement of potentially liquefiable soils, or (4) shallow foundations where permanent lowering of the perched groundwater level has been implemented. The allowable bearing pressure for shallow foundations and the need for pin piles or ground improvement will depend on the location of the buildings, static and seismic performance expectations, and cost. For preliminary design, shallow foundations designed for an allowable bearing pressure ranging from 2 to 4 kips per square foot (ksf) may be assumed.
- Conventional slabs-on-grade are considered appropriate for this site and should be underlain by a 6-inch-thick layer of clean crushed rock (for example, City of Seattle Mineral Aggregate Type 22). The foundation drainage system is anticipated to consist of a perimeter foundation drain.

Our specific geotechnical recommendations are presented in the following sections of this report.

Earthquake Engineering

Liquefaction

We evaluated the liquefaction susceptibility of soils underlying buildings as part of the preliminary study, based on both existing geotechnical data and the explorations completed as part of this study. The site is

anticipated to have a moderate to high risk of liquefaction where fill and recent deposits are located within the upper 15 feet across the site. Perched groundwater was encountered at depths of approximately 3 to 10 feet below existing site grades.

We evaluated liquefaction potential using the simplified method of Idriss and Boulanger (2008). Earthquake input parameters used in our analyses were determined using the 2008 United States Geological Survey (USGS) seismic hazard model for a recurrence interval of 2,475 years. A mean earthquake of magnitude 6.92 and a peak ground acceleration (PGA) (corrected for site class) of 0.54g was used to evaluate liquefaction potential of the site soils. Based on our evaluation of the subsurface data, it was determined that zones of soils susceptible to liquefaction are present within the fill and recent deposits within the upper 15 feet of soils at the site. Borings that experienced liquefaction include GEI-1-17 through GEI-3-17, B-1 through B-3, B-8, MW-1, and P-3. We evaluated liquefaction-induced ground settlement using Idriss and Boulanger (2008) and Ishihara and Yoshimine (1992). Based on our analysis of the subsurface data, we estimate that areas of the site could experience up to 5 inches of liquefaction induced settlement for free field conditions. Differential settlement can be anticipated to occur between structural elements with different foundation support conditions.

2015 IBC Seismic Design Information

The explorations completed at the site showed locations of both soil profile Site Class C and D. Each building should be analyzed during design to determine the appropriate site class. We recommend the use of the following 2015 IBC parameters for site class, short period spectral response acceleration (S₁) and seismic coefficients (F_A and F_V) for the project site. It should be noted that while our analyses indicate that potentially liquefiable soils are present at the site, the fundamental period of vibration of the structures is anticipated to be less than 0.5 seconds, and as a result, the exception presented in Section 20.3.1 of ASCE 7-10 has been used to provide preliminary site class recommendations. If the fundamental period of vibration of the structure further guidance.

2015 IBC Parameter	Recomme	nded Value
Soil Profile Site Class	С	D
Short Period Spectral Response Acceleration, S_S (percent g)	131	131
1-Second Period Spectral Response Acceleration, S_1 (percent g)	51	51
Seismic Coefficient, F _A	1.0	1.0
Seismic Coefficient, Fv	1.3	1.5

Excavation Support

Because the buildings are planned to be constructed at grade (no below grade levels), temporary cut slopes can be utilized to complete the excavations for the at grade buildings.

We provide preliminary geotechnical design and construction recommendations for temporary cut slopes and excavation considerations below.

Temporary Cut Slopes

The stability of open-cut slopes is a function of soil type, groundwater seepage, slope inclination, slope height and nearby surface loads. The use of inadequately designed open cuts could impact the stability of adjacent work areas, could affect existing utilities and could endanger personnel.

The contractor performing the work has the primary responsibility for protection of workers and adjacent improvements. In our opinion, the contractor will be in the best position to observe subsurface conditions continuously throughout the construction process and to respond to variable soil and groundwater conditions. Therefore, the contractor should have the primary responsibility for deciding whether to use open-cut slopes for much of the excavations rather than some form of temporary excavation support, and for establishing the safe inclination of the cut slope. Acceptable slope inclinations for utilities and ancillary excavations should be determined during construction. Because of the diversity of construction techniques and available shoring systems, the design of temporary cut slopes and shoring must comply with the provisions of Chapter 296-155 Washington Administrative Code (WAC), Part N, "Excavation, Trenching and Shoring."

Temporary unsupported cut slopes more than 4 feet high may be inclined at 1.5H:1V (horizontal to vertical) maximum steepness within the fill or recent deposits. For open cuts at the site, we recommend that:

- no traffic, construction equipment, stockpiles or building supplies be allowed at the top of the cut slopes within a distance of at least 5 feet from the top of the cut;
- the cut slopes should be planned such that they do not encroach on a 1H:1V influence line projected down from the edges of nearby or planned foundation elements;
- exposed soil along the slope be protected from surface erosion by using waterproof tarps or plastic sheeting;
- construction activities be scheduled so that the length of time the temporary cut is left open is reduced to the extent practicable;
- erosion control measures be implemented as appropriate such that runoff from the site is reduced to the extent practicable;
- surface water be diverted away from the slope; and
- the general condition of the slopes be observed periodically by the geotechnical engineer to confirm adequate stability.

Water that enters the excavation must be collected and routed away from prepared subgrade areas. We expect that this may be accomplished by installing a system of drainage ditches and sumps along the toe of the cut slopes. Some sloughing and raveling of the cut slopes should be expected. Temporary covering, such as heavy plastic sheeting with appropriate ballast, should be used to protect these slopes during periods of wet weather. Surface water runoff from above cut slopes should be prevented from flowing over the slope face by using berms, drainage ditches, swales or other appropriate methods.

Excavation Considerations

The site soils may be excavated with conventional excavation equipment, such as trackhoes or dozers. The contractor should be prepared for surficial fill that may contain foundation elements and/or utilities from previous site development, debris, rubble and/or cobbles and boulders. We recommend that procedures be identified in the project specifications for measurement and payment of work associated with obstructions.

Foundation Support

Shallow foundations are considered feasible where non-liquefiable soils are present. Where liquefiable soils are present, foundation options include: (1) shallow foundations bearing on improved ground, (2) pin piles, (3) shallow foundations bearing on partial or full-depth removal and replacement of potentially liquefiable soils, or (4) shallow foundations where permanent lowering of the perched groundwater level has been implemented. Selection of the preferred foundation support option will depend on the presence/non-presence of liquefiable soils, the depth to liquefiable soils below foundations, and post-seismic performance expectations for the buildings. It should be noted that further explorations will be required for final design and to verify foundation support options. For preliminary design/due diligence, the following scenarios can be considered:

Scenario 1: Conservative Option

Support each of the buildings on pin piles or ground improvement extending from the bottom of foundation elevation to the elevation of the top of the glacially consolidated soil layer.

Scenario 2: Moderately Conservative Option

Support Buildings 2, 6, 7, and 9 using pin piles or ground improvement extending below the shallow foundations. The remaining buildings can be supported on shallow foundations overlying structural fill extending to 3 feet below foundation subgrade elevation.

Scenario 3: Less Conservative Option

Accept a higher post-seismic settlement tolerance (while still providing collapse prevention). For preliminary planning, this option can be estimated to consist of supporting Buildings 2, 6, 7, and 9 on spread foundations bearing on 6 feet of structural fill. The remaining buildings can be supported on shallow foundations overlying structural fill extending to 3 feet below foundation subgrade elevation.

The following sections provide the specific recommendations regarding foundation support using shallow foundations, deep foundations and shallow foundations bearing on ground improvement.

Shallow Foundations

The soils at the anticipated foundation elevation vary across the site and consist of fill, recent deposits, and glacially consolidated soils. The fill soils are not suitable for shallow foundation support due to anticipated foundation settlement under static and seismic loading. Portions of the fill and recent deposits are potentially liquefiable.

Shallow foundations are considered feasible where non-organic and non-liquefiable soils are present. If organic soils are present at foundation subgrade elevation, the organic soils should be removed and replaced with structural fill. Where liquefiable soils are present, foundation options include: (1) shallow

foundations bearing on improved ground, (2) pin piles, (3) shallow foundations bearing on partial or full-depth removal and replacement of potentially liquefiable soils, or (4) shallow foundations where permanent lowering of the perched groundwater level has been implemented. The allowable bearing pressure for shallow foundations and the need for pin piles or ground improvement will depend on the location of the buildings, static and seismic performance expectations, and cost.

For preliminary design, we recommend that the buildings be supported on shallow spread or mat foundations bearing on non-liquefiable stiff or stiffer/medium dense or denser recent deposits or glacially consolidated soils. Where fill or soft to medium stiff/loose recent deposits are present at foundation subgrade elevation and the soils are non-liquefiable, the fill/recent deposits should be removed to a depth of at least 3 feet below foundation elevation and replaced with properly compacted structural fill. For areas where the foundations will bear on potentially liquefiable fill or recent deposit soils, ground improvement or mitigation measures as discussed below is recommended.

Allowable Bearing Pressure

For shallow foundations supported as described above, a preliminary allowable soil bearing pressure of 2 to 4 ksf may be assumed for preliminary design. During the design phase of the project, foundation support options should be reviewed with the project team to determine the preferred foundation support alternative and finalize the allowable bearing pressures on a building by building basis.

The allowable soil bearing pressure applies to the total of dead and long-term live loads and may be increased by up to one-third for wind or seismic loads. The allowable soil bearing pressures are net values.

Settlement

Provided that all loose soil is removed and that the subgrade is prepared as recommended under "Construction Considerations" below, we estimate that the total settlement of shallow foundations will be about 1 inch or less. The settlements will occur rapidly, essentially as loads are applied. Differential settlements between footings could be half of the total settlement. Note that smaller settlements will result from lower applied loads.

Size and Embedment

We recommend that the exterior footings be founded a minimum of 18 inches below the lowest adjacent grade. Interior footings should be founded a minimum of 12 inches below top of slab. Continuous wall footings and individual column footings should have minimum widths of 24 inches.

Lateral Resistance

Lateral foundation loads may be resisted by passive resistance on the sides of footings and by friction on the base of the shallow foundations. For shallow foundations supported on native soils, the allowable frictional resistance may be computed using a coefficient of friction of 0.3 applied to vertical dead-load forces.

The allowable passive resistance may be computed using an equivalent fluid density of 300 pounds per cubic foot (pcf) (triangular distribution). These values are appropriate for foundation elements that are surrounded by structural fill.

The above coefficient of friction and passive equivalent fluid density values incorporate a factor of safety of about 1.5.

Construction Considerations

We recommend that the condition of all subgrade areas be observed by GeoEngineers to evaluate whether the work is completed in accordance with our recommendations and whether the subsurface conditions are as anticipated.

If foundation construction is completed during periods of wet weather, foundation subgrades are recommended to be protected with a rat slab consisting of 2 to 4 inches of lean or structural concrete.

If soft areas are present at the footing subgrade elevation, the soft areas should be removed and replaced with lean concrete or structural fill at the direction of GeoEngineers.

We recommend that the contractor consider leaving the subgrade for the foundations as much as 6 to 12 inches high, depending on soil and weather conditions, until excavation to final subgrade is required for foundation reinforcement. Leaving subgrade high will help reduce damage to the subgrade resulting from construction traffic for other activities.

Deep Foundations

Pin piles may also be used to support the planned buildings in areas where potentially liquefiable soils are present. The following section detail the design recommendations for pin piles.

Pin Piles

Pin piles typically consist of steel pipe piles that are driven to a specified depth or refusal with a hydraulic hammer. The pin piles can be embedded into the glacially consolidated soils to mitigate liquefaction induced settlement. Pin piles should be installed to a practical refusal criteria developed based on the type and size of impact hammer used to install the piles. Piles should be spaced at least three pile diameters apart.

The pin piles should be used for axial compressive loading only. Pin piles will require geotechnical special inspection and typically one ASTM quick test to confirm pile capacity. Pin pile capacities up to 40 kips can be assumed for preliminary design for 4-inch to 6-inch-diameter pin piles.

Ground Improvement

Ground improvement is an option to mitigate potentially liquefiable soils and to control foundation settlement. Feasible ground improvement options include stone columns, rammed aggregate piers (RAPs), and rigid inclusions installed at the base of the planned foundations. Each of these ground improvement systems would be completed on a grid pattern, where necessary, to transfer the foundation loading to the bearing soils and mitigate liquefaction. GeoEngineers can design the ground improvement system in collaboration with the general contractor and structural engineer. During the design phase of the project, foundation support options should be reviewed with the project team to determine the preferred foundation support alternative.

In addition to stone columns, RAPs, and rigid inclusions, full-depth and partial-depth removal and replacement of potentially liquefiable soils are considered feasible ground improvement options.

The purpose of ground improvement is to mitigate potential static and/or seismic induced settlement resulting from consolidation and seismic liquefaction of the fill and recent deposits. The benefits of ground improvement for this site include:

- ground improvement will allow for conventional shallow foundations and slabs-on-grade; and
- ground improvement will mitigate the potential settlement resulting from liquefaction of the loose to medium dense fill and recent deposit soils during the design seismic event to tolerable magnitudes.

Where ground improvement is used, a preliminary allowable bearing pressure ranging from 2 to 4 ksf may be used for design. The allowable bearing pressure should be confirmed during final design after the preferred foundation support methodology has been selected. The following sections provide a general description of ground improvement methodologies.

Rigid Inclusions

Rigid inclusions consist of unreinforced lean concrete columns installed to the bearing soil below the building foundation elements on a variable grid pattern. The design concept with the use of rigid inclusions is to transfer building loads to the bearing soil and control static and seismic settlement.

Advantages with the use of rigid inclusions include:

- lean concrete columns are more economical than augercast piles (shorter length, no reinforcement, and allows for the use of conventional spread footings/slabs-on-grade);
- there is minimal disturbance of adjacent structures during installation; and
- there is a lower level of construction noise (i.e. no pile driving), there will be lesser impacts to nearby businesses/residences/buried utilities during construction.

Rigid inclusions for this site would be constructed using similar techniques for installing augercast piles. Where augercast methods are used, the first step in the rigid inclusion casting process consists of drilling the auger into the ground to the specified tip elevation of the column. Grout is then pumped into the hole using a tremie pipe.

GeoEngineers can assist the project team with preparation of the ground improvement plan and specifications once the foundation layout and building loads have been finalized.

Stone Columns and Rammed Aggregate Piers

Stone columns and RAPs are considered to be appropriate ground improvement techniques for this site. The intent of these ground improvement techniques is to improve the near surface soils sufficiently to control static and seismic induced settlement to within tolerable levels.

RAPs consist of columns of crushed aggregate that are compacted in-place in thin lifts using a hydraulic ram. The RAPs are completed on a grid pattern under foundations. The depth and spacing of the RAPs depends on the foundation loads, soil conditions, and settlement tolerances.

The stone column technique uses a large vibrator to advance a probe to the design depth. Crushed aggregate is injected at the tip of the vibrator as it is removed. Compaction is achieved using vibration, and working the vibrator up and down as it is removed, to create a column of densely compacted crushed aggregate. Stone columns are installed on a grid pattern below foundations. The depth and spacing of the stone columns depends on the foundation loads, soil conditions, and settlement tolerances.

These ground improvement techniques will result in a composite soil mass that has improved strength, and reduced compressibility under building loads. We recommend that the RAPs or stone columns extend into bearing soils located below the base of the excavation.

Both of these methods would likely create some vibration to the surrounding area, but less than that which would result from driven piles. These vibrations are not expected to adversely affect nearby off-site structures. However, it is likely that the vibrations will be noticed within a limited area in and adjacent to the site.

We recommend that the RAPs or stone columns be installed in a grid pattern below the shallow foundations. The stone columns or RAPs would support moderate foundation loads and reduce post construction settlement to an acceptable amount.

Foundation Drains

We recommend that perimeter foundation drains be installed around the proposed buildings. The drains should consist of 4-inch-diameter perforated collector pipe enveloped within a minimum thickness of 6 inches of gravel as described in the Structural Fill section of this report. The gravel backfill should be wrapped with a geotextile filter fabric meeting the requirements of construction geotextile for underground drainage (Section 9-33 of the 2012 Washington State Department of Transportation [WSDOT] Standard Specifications).

We recommend using either heavy-wall solid pipe (SDR-35 polyvinyl chloride [PVC]) or rigid corrugated polyethylene pipe (ADS N-12 or equivalent) for the collector pipe. We recommend against using flexible tubing for footing drainpipe.

The pipes should be laid with a minimum slope of ½ percent and discharge into an appropriate outfall. The pipe installations should include a cleanout riser with cover located at the upper end of each pipe run. We recommend that the cleanouts be covered and be placed in flush-mounted utility boxes or monuments. The foundation drainpipes should be located near the base of perimeter strip footings where discrete spread foundations are used or below the capillary break layer for pile supported buildings with structural slabs.

Permanent drainage systems should intercept surface water runoff at the top and/or bottom of cut and fill slopes to prevent runoff from flowing in an uncontrolled manner across the site. The finished ground surface adjacent to new and existing buildings should be sloped so that surface water runoff flows away from the structures and the nearby slopes. Roof drains should be tightlined to an appropriate discharge point and should not be connected to the footing or wall drains.

Slab-on-Grade Floors

Subgrade Preparation

The exposed subgrade should be evaluated after site grading is complete. Proof-rolling with heavy, rubber-tired construction equipment should be used for this purpose during dry weather and if access for this equipment is practical. Probing should be used to evaluate the subgrade during periods of wet weather or if access is not feasible for construction equipment. The exposed soil should be firm and unyielding, and without significant groundwater. Disturbed areas should be recompacted if possible or removed and replaced with compacted structural fill.

The site should be rough graded to approximately 1 foot above slab subgrade elevation prior to foundation construction in order to protect the slab subgrade soils from deterioration from wet weather or construction traffic. After the foundations and below slab drainage system have been constructed, the remaining soils can be removed to final subgrade elevation followed by immediate placement of the capillary break material.

Design Parameters

Conventional slabs may be supported on-grade, provided the subgrade soils are prepared as recommended in the "Subgrade Preparation" section above. We recommend that the slab be founded on either undisturbed glacially consolidated soils or on structural fill placed over the undisturbed glacially consolidated soils. For slabs designed as a beam on an elastic foundation, a modulus of subgrade reaction of 150 pounds per cubic inch (pci) may be used for subgrade soils prepared as recommended.

We recommend that the slab-on-grade floors be underlain by a 6-inch-thick capillary break consisting of material meeting the requirements of Mineral Aggregate Type 22 (³/₄-inch crushed gravel), City of Seattle Standard Specification 9-03.14.

Provided that loose soil is removed, and the subgrade is prepared as recommended, we estimate that slabs-on-grade will not settle appreciably.

A vapor barrier should be used below slab-on-grade floors located in occupied portions of the buildings. Specification of the vapor barrier requires consideration of the performance expectations of the occupied space, the type of flooring planned and other factors, and is typically completed by other members of the project team.

Cast-in-place Walls

Conventional cast-in-place walls may be necessary on-site. The lateral soil pressures acting on conventional cast-in-place subsurface walls will depend on the nature, density and configuration of the soil behind the wall and the amount of lateral wall movement that can occur as backfill is placed.

For walls that are free to yield at the top at least 0.1 percent of the height of the wall, soil pressures will be less than if movement is limited by such factors as wall stiffness or bracing. Assuming that the walls are backfilled and drainage is provided as outlined in the following paragraphs, we recommend that yielding walls supporting horizontal backfill be designed using an equivalent fluid density of 35 pcf (triangular distribution), while non-yielding walls supporting horizontal backfill be designed using conditions, a rectangular earth pressure equal

to 7H pounds per square foot (psf) (where H is the height of the wall in feet) should be added to the active/at-rest pressures. Other surcharge loading should be applied as appropriate.

Lateral resistance for conventional cast-in-place walls can be provided by frictional resistance along the base of the wall and passive resistance in front of the wall. For walls founded on native soils, the allowable frictional resistance may be computed using a coefficient of friction of 0.4 applied to vertical dead-load forces. The allowable passive resistance may be computed using an equivalent fluid density of 400 pcf (triangular distribution). The above coefficient of friction and passive equivalent fluid density values incorporate a factor of safety of about 1.5.

The above soil pressures assume that wall drains will be installed to prevent the buildup of hydrostatic pressure behind the walls. If no wall drainage is provided the below-grade walls shall be designed to resist hydrostatic pressures.

Drainage

We recommend either installing a below-grade wall drainage system to remove water from behind below-grade walls or to waterproof the below-grade walls and design them to resist full height hydrostatic pressures.

If below-grade walls are to be designed using the earth pressures presented above, positive drainage should be provided behind cast-in-place retaining walls by placing a minimum 2-foot-wide zone of Mineral Aggregate Type 17 (bank run gravel), with the exception that the percent passing the U.S. No. 200 sieve should be less than 3 percent. A perforated or slotted drainpipe should be placed near the base of the retaining wall to provide drainage. The drainpipe should be surrounded by a minimum of 6 inches of Mineral Aggregate Type 22 or Type 5 (1-inch washed gravel), or an alternative approved by GeoEngineers. The Type 22 or Type 5 material should be wrapped with a geotextile filter fabric meeting the requirements of construction geotextile for underground drainage, WSDOT Standard Specification 9-33. The wall drainpipe should be connected to a header pipe and routed to a sump or gravity drain. Appropriate cleanouts for drainpipe maintenance should be installed. A larger-diameter pipe will allow for easier maintenance of drainage systems.

Earthwork

Subgrade Preparation

The exposed subgrade in structure and hardscape areas should be evaluated after site excavation is complete. Disturbed areas below slabs should be recompacted if the subgrade soil consists of granular material. If the subgrade soils consist of disturbed soils, it will likely be necessary to remove and replace the disturbed soil with structural fill unless the soil can be adequately moisture-conditioned and compacted.

Structural Fill

Fill placed to support structures, placed behind retaining structures, and placed below pavements and sidewalks will need to be specified as structural fill as described below:

If structural fill is necessary beneath building slabs, the fill should meet the requirements of Mineral Aggregate Type 2 or Type 17 (1¹/₄-inch minus crushed rock or bank run gravel), City of Seattle Standard Specification 9-03.14.

- If structural fill is necessary beneath building foundations, the fill should consist of Mineral Aggregate Type 2 or Type 17 (1¹/₄-inch minus crushed rock or bank run gravel), City of Seattle Standard Specification 9-03.14, or CDF.
- Structural fill placed behind retaining walls should meet the requirements of Mineral Aggregate Type 17 (bank run gravel), City of Seattle Standard Specification 9-03.14.
- Structural fill placed within utility trenches and below pavement and sidewalk areas should consist of CDF, or fill meeting the requirements of Mineral Aggregate Type 17 (bank run gravel), City of Seattle Standard Specification 9-03.14.
- Structural fill placed around perimeter footing drains, underslab drains and cast-in-place wall drains should meet the requirements of Mineral Aggregate Type 5 (1-inch washed gravel) or Type 22 (³/₄-inch crushed gravel), City of Seattle Standard Specification 9-03.14, with the exception that the percent fines be less than 3 percent.
- Structural fill placed as capillary break material should meet the requirements of Type 22 (³/₄-inch crushed gravel), City of Seattle Standard Specification 9-03.14.
- Structural fill placed as crushed surfacing base course below pavements and sidewalks should meet the requirements of Mineral Aggregate Type 2 (1¹/₄-inch minus crushed rock), City of Seattle Standard Specification 9-03.14.

On-site Soils

The on-site soils are moisture-sensitive and may have natural moisture contents higher than the anticipated optimum moisture content for compaction. As a result, the on-site soils may require moisture conditioning in order to meet the required compaction criteria during dry weather conditions and will not be suitable for reuse during wet weather. Furthermore, most of the anticipated fill soils required for this project have specific gradation requirements, and the on-site soils do not meet these gradation requirements. If the contractor wants to use on-site soils for structural fill, GeoEngineers can evaluate the on-site soils for suitability as structural fill, as required.

Fill Placement and Compaction Criteria

Structural fill should be mechanically compacted to a firm, non-yielding condition. Structural fill should be placed in loose lifts not exceeding 1 foot in thickness. Each lift should be conditioned to the proper moisture content and compacted to the specified density before placing subsequent lifts. Structural fill should be compacted to the following criteria:

- Structural fill placed in building areas (supporting foundations or slab-on-grade floors) and in pavement and sidewalk areas (including utility trench backfill) should be compacted to at least 95 percent of the maximum dry density (MDD) estimated in general accordance with ASTM International (ASTM) D 1557.
- Structural fill placed against subgrade walls should be compacted to between 90 and 92 percent. Care should be taken when compacting fill against subsurface walls to avoid over-compaction and hence overstressing the walls.

We recommend that GeoEngineers be present during probing of the exposed subgrade soils in building and pavement areas, and during placement of structural fill. We will evaluate the adequacy of the subgrade soils and identify areas needing further work, perform in-place moisture-density tests in the fill to verify

compliance with the compaction specifications, and advise on any modifications to the procedures that may be appropriate for the prevailing conditions.

Weather Considerations

The on-site soils contain a sufficient percentage of fines (silt and clay) to be moisture-sensitive. When the moisture content of these soils is more than a few percent above the optimum moisture content, these soils become muddy and unstable, and operation of equipment on these soils is difficult. Additionally, disturbance of near-surface soils should be expected if earthwork is completed during periods of wet weather. During wet weather, we recommend the following:

- The ground surface in and around the work area should be sloped so that surface water is directed away from the work area. The ground surface should be graded such that areas of ponded water do not develop. The contractor should take measures to prevent surface water from collecting in excavations and trenches. Measures should be implemented to remove surface water from the work area.
- Slopes with exposed soils should be covered with plastic sheeting or similar means.
- The site soils should not be left uncompacted and exposed to moisture. Sealing the surficial soils by rolling with a smooth-drum roller prior to periods of precipitation will reduce the extent to which these soils become wet or unstable.
- Construction traffic should be restricted to specific areas of the site, preferably areas that are surfaced with materials not susceptible to wet weather disturbance.
- Construction activities should be scheduled so that the length of time that soils are left exposed to moisture is reduced to the extent practicable.

Utility Trenches

Trench excavation, pipe bedding, and trench backfilling should be completed using the general procedures described in the 2016 WSDOT Standard Specifications, or City of Lynnwood requirements, or as specified by the project civil engineer.

Utility trench backfill should consist of structural fill and should be placed in lifts of 12 inches or less (loose thickness) when using heavy compaction equipment, and 6 inches or less when using hand compaction equipment, such that adequate compaction can be achieved throughout the lift. Each lift must be compacted prior to placing the subsequent lift. Prior to compaction, the backfill should be moisture conditioned to within 2 percent of the optimum moisture content. The backfill should be compacted in accordance with the criteria discussed above.

Recommended Additional Geotechnical Services

GeoEngineers will complete a design-level geotechnical engineering evaluation for the project, which is anticipated to confirm or modify as appropriate the preliminary design recommendations presented in this report. During the design we recommend additional explorations be completed to fill in current data gaps. GeoEngineers should be retained to review the project plans and specifications when complete to confirm that our design recommendations have been implemented as intended.

During construction, GeoEngineers should observe the suitability of the foundation subgrades, observe installation of subsurface drainage measures, evaluate structural backfill, observe the condition of temporary cut slopes, and provide a summary letter of our construction observation services. The purposes of GeoEngineers construction phase services are to confirm that the subsurface conditions are consistent with those observed in the explorations and other reasons described in Appendix C, Report Limitations and Guidelines for Use.

LIMITATIONS

We have prepared this report for the exclusive use of the Wolff Enterprises II, LLC and their authorized agents for the 2927 Alderwood Mall Blvd project in Lynnwood, Washington.

Within the limitations of scope, schedule and budget, our services have been executed in accordance with generally accepted practices in the field of geotechnical engineering in this area at the time this report was prepared. No warranty or other conditions, express or implied, should be understood.

Any electronic form, facsimile or hard copy of the original document (email, text, table and/or figure), if provided, and any attachments are only a copy of the original document. The original document is stored by GeoEngineers, Inc. and will serve as the official document of record.

Please refer to Appendix C for additional information pertaining to use of this report.

REFERENCES

City of Seattle, 2017, "Standard Specifications for Road, Bridge and Municipal Construction."

- EHSI, 2017, "Edmonds School District No. 15, Revised Final Remedial Investigation Report, VCP Number: NW2712, Maintenance and Transportation Facility, 2917 Alderwood Mall Boulevard, Lynnwood, Washington 98036."
- Idriss, I. M., and R. W. Boulanger 2008, "Soil Liquefaction during Earthquakes." Earthquake Engineering Research Institute MN0-12.

International Code Council, 2015, "International Building Code."

- Ishihara, K., and Yoshimine, M., "Evaluation of Settlements in Sand Deposits Following Liquefaction During Earthquakes," Soils and Foundations, 32(1), 1992, pp. 173-188.
- United States Geological Survey National Seismic Hazard Mapping project Software, "Earthquake Ground Motion Parameters, Version 5.0.9a," 2002 data, 2009.
- Washington State Department of Transportation, 2016, "Standard Specifications for Road, Bridge and Municipal Construction."

Legend

	Project Boundary
GEI-1-17 🔶	Boring by GeoEngineers, 2017 (Current Study)
B-1 O	Boring with Monitoring Well by ZZA, 2008
AB-19A 🔘	Boring by AMEC, 2008
AB-19B 🔴	Boring with Monitoring Well by AMEC, 2008
S-1 🔲	Boring by Landau, 1996
P2	Boring by ECOVA, 1991
MW-1 🛈	Boring with Monitoring Well by ECOVA, 1991

Notes:

- 1.
- The locations of all features shown are approximate. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication. 2.

Data Source: Base from Katerra dated 09/27/17.

Projection: NAD83 Washington State Planes, North Zone, US Foot

Vertical Datum: NAVD88

Legend

	Project Boundary
GEI-1-17-	Boring by GeoEngineers, 2017 (Current Study)
B-1 O	Boring with Monitoring Well by ZZA, 2008
AB-19A)	Boring by AMEC, 2008
AB-19B 🔴	Boring with Monitoring Well by AMEC, 2008
S-1 🔲	Boring by Landau, 1996
P2 - 🔶 -	Boring by ECOVA, 1991
MW-1 🛈	Boring with Monitoring Well by ECOVA, 1991

Notes:

The locations of all features shown are approximate.
 This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Data Source: Base from Katerra dated 09/27/17. Designs from Katerra dated 10/5/17.

Projection: NAD83 Washington State Planes, North Zone, US Foot

Vertical Datum: NAVD88

APPENDIX A Field Explorations and Laboratory Testing

APPENDIX A FIELD EXPLORATIONS AND LABORATORY TESTING

Field Explorations

Subsurface conditions were explored at the site by drilling seven borings (GEI-1-17 through GEI-7-17). The borings were completed to depths of approximately 2 to $21\frac{1}{2}$ feet below the existing ground surface. The borings were completed by Geologic Drill Exploration, Inc. on November 20, 2017.

The locations of the explorations were estimated by taping/pacing from existing site features. The approximate exploration locations are shown on the Site Plan, Figure 2.

Borings

The borings were completed using a trailer-mounted, continuous-flight, hollow-stem auger drilling equipment. The borings were continuously monitored by a geotechnical engineer or geologist from our firm who examined and classified the soils encountered, obtained representative soil samples, observed groundwater conditions and prepared a detailed log of each exploration.

The soils encountered in the borings were generally sampled at 2½- and 5-foot vertical intervals with a 2-inch outside diameter split-barrel standard penetration test (SPT) sampler. The disturbed samples were obtained by driving the sampler 18 inches into the soil with a 140-pound automatic hammer free-falling 30 inches. The number of blows required for each 6 inches of penetration was recorded. The blow count ("N-value") of the soil was calculated as the number of blows required for the final 12 inches of penetration. This resistance, or N-value, provides a measure of the relative density of granular soils and the relative consistency of cohesive soils. Where very dense soil conditions precluded driving the full 18 inches, the penetration resistance for the partial penetration was entered on the logs. The blow counts are shown on the boring logs at the respective sample depths.

Soils encountered in the borings were visually classified in general accordance with the classification system described in Figure A-1. A key to the boring log symbols is also presented in Figure A-1. The logs of the borings are presented in Figures A-2 through A-8. The boring logs are based on our interpretation of the field and laboratory data and indicate the various types of soils and groundwater conditions encountered. The logs also indicate the depths at which these soils or their characteristics change, although the change may actually be gradual. If the change occurred between samples, it was interpreted. The densities noted on the boring logs are based on the blow count data obtained in the borings and judgment based on the conditions encountered.

Observations of groundwater conditions were made during drilling. The groundwater conditions encountered during drilling are presented on the boring logs. Groundwater conditions observed during drilling represent a short-term condition and may or may not be representative of the long-term groundwater conditions at the site. Groundwater conditions observed during drilling should be considered approximate.

Laboratory Testing

Soil samples obtained from the explorations were transported to GeoEngineers' laboratory and evaluated to confirm or modify field classifications, as well as to evaluate engineering properties of the soil samples. Representative samples were selected for laboratory testing to determine the moisture content, and

percent fines (material passing the U.S. No. 200 sieve). The tests were performed in general accordance with test methods of ASTM International (ASTM) or other applicable procedures.

Moisture Content

Moisture content tests were completed in general accordance with ASTM D 2216 for representative samples obtained from the explorations. The results of these tests are presented on the exploration logs at the respective sample depths.

Percent Fines

Selected samples were "washed" through the U.S. No. 200 mesh sieve to estimate the relative percentages of coarse- and fine-grained particles in the soil. The percent passing value represents the percentage by weight of the sample finer than the U.S. No. 200 sieve. These tests were conducted to verify field descriptions and to estimate the fines content for analysis purposes. The tests were conducted in accordance with ASTM D 1140, and the results are presented on the exploration logs at the respective sample depths.

	S	OIL CLASSI	FICATI	ON CH	ART	ADDIT	IONAL	MATERIAL SY
Γ	MAJOR DIVIS	IONS	SYM GRAPH	BOLS	TYPICAL DESCRIPTIONS	SYM	BOLS	TYPICA
	GRAVE	CLEAN GRAVELS		GW	WELL-GRADED GRAVELS, GRAVEL - SAND MIXTURES	GRAFII	AC	Asphalt Concrete
	AND GRAVELLY SOILS	(LITTLE OR NO FINES)		GP	POORLY-GRADED GRAVELS, GRAVEL - SAND MIXTURES		00	Cement Concret
COARSE GRAINED	MORE THAN 50%	GRAVELS WITH		GM	SILTY GRAVELS, GRAVEL - SAND - SILT MIXTURES			Crushed Rock/
SOILS	OF COARSE FRACTION RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		GC	CLAYEY GRAVELS, GRAVEL - SAND - CLAY MIXTURES		CR	Quarry Spalls
		CLEAN SANDS		SW	WELL-GRADED SANDS, GRAVELLY SANDS	<u>1/ <u>N1/ N1/</u></u>	SOD	Sod/Forest Duff
MORE THAN 50% RETAINED ON NO. 200 SIEVE	SAND AND SANDY	(LITTLE OR NO FINES)	° • • • • • • • • •	SP	POORLY-GRADED SANDS, GRAVELLY SAND		TS	Topsoil
	SUILS MORE THAN 50%	SANDS WITH		SM	SILTY SANDS, SAND - SILT MIXTURES		Groundy	vater Contact
	FRACTION PASSING ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)		sc	CLAYEY SANDS, SAND - CLAY MIXTURES			groundwater leve
				ML	INORGANIC SILTS, ROCK FLOUR, CLAYEY SILTS WITH SLIGHT PLASTICITY		Aeasured	free product in w
FINE	SILTS AND CLAYS	LIQUID LIMIT LESS THAN 50		CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS,	<u> </u>	Graphic	Log Contact
GRAINED SOILS				OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	[Distinct co	ontact between so
MORE THAN 50% PASSING				МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS SILTY SOILS	/	Approxima Matoria	ate contact betwe
NO. 200 SIEVE	SILTS AND CLAYS	LIQUID LIMIT GREATER THAN 50		СН	INORGANIC CLAYS OF HIGH PLASTICITY	(Contact be	etween geologic u
			17	он	ORGANIC CLAYS AND SILTS OF MEDIUM TO HIGH PLASTICITY	(Contact be	etween soil of the
	HIGHLY ORGANIC	SOILS	h	РТ	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS		aborat	orv / Field Teo
DTE: Multiple	Sal	sed to indicate bo mpler Symb -inch I.D. split b ndard Penetrat elby tube con ect-Push k or grab atinuous Coring ecorded for driv to advance sa	ven samp	olual soil (cription (SPT) (SPT) blers as t 2 inches	he number of (or distance noted).	%FF%GFALACACCPLCSCDDLDSFMOMMOhsMOCCPMFPASTXTUCLVSN	Percent fin Percent gr Atterberg Chemical aboratory Consolida Dry densit Direct she Hydromet Moisture of Moisture of Moisture of Permeabil Plasticity i Pocket pe Sieve anal Corganic co Permeabil Plasticity i Pocket pe Sieve anal Constal co Jaconfine Vane shea	nes avel limits analysis y compaction test tion test y ar er analysis content sontent ity or hydraulic condex net ndex netrometer lysis mpression d compression
Se "F	ee exploratio	n log for hamm ampler pushec	ter weigh I using th	it and dr	op. t of the drill rig.	:	Sheen C	lassification
"V ha	WOH" indicate ammer.	es sampler pus	shed usin	g the we	ight of the	NS I SS S MS I HS I	No Visible Slight She Moderate Heavy She	Sheen en Sheen een

IONAL MATERIAL SYMBOLS

SYM	BOLS	TYPICAL
GRAPH	LETTER	DESCRIPTIONS
	AC	Asphalt Concrete
	СС	Cement Concrete
	CR	Crushed Rock/ Quarry Spalls
	SOD	Sod/Forest Duff
	TS	Topsoil

Ţ	Measured groundwater level in exploration, well, or piezometer
<u> </u>	Measured free product in well or piezometer
	Graphic Log Contact Distinct contact between soil strata
	Material Description Contact Contact between geologic units
	Contact between soil of the same geologic unit
	Laboratory / Field Tests
%F %G AL CCS DDS HAC DDS HAC MD hS MO PI PP SA XUCS	Percent fines Percent gravel Atterberg limits Chemical analysis Laboratory compaction test Consolidation test Dry density Direct shear Hydrometer analysis Moisture content Moisture content and dry density Mohs hardness scale Organic content Permeability or hydraulic conductivity Plasticity index Pocket penetrometer Sieve analysis Triaxial compression Unconfined compression Vane shear

heen Classification

- lo Visible Sheen ilight Sheen
- Ioderate Sheen
- leavy Sheen

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

Drille	ed 11/3	<u>Start</u> 20/2017	<u>En</u> 11/20	<u>d</u> D/2017	Total Depth	(ft)	20.5	Logged By Checked By	PEB MAG	Driller Geologic Drill Explore	ation, Ir	IC.		Drilling Method Hollow-stem Auger
Surfa Vertio	ice Eleva cal Datu	ation (ft) m		NA	385 AVD88			Hammer Data	14	Rope & Cathead Ю (lbs) / 30 (in) Drop	Drill Equ	ing ipm	ent	Deep Rock XL
Easti North	ng (X) ning (Y)			12 30	86407)4554			System Datum	W	A State Plane North NAD83 (feet)	See	"Re	emark	s" section for groundwater observed
Note	es:													
Elevation (feet)	b Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	Sample Name Testing	Graphic Log	Group Classification		M/ DES	ATERIAL CRIPTION	Moisture	Content (%)	Fines Content (%)	REMARKS
	- 0 - - - -	14	5		1		GP SM	Fine gravel Brown silty fine to medium sand with occasional gravel (loose, moist) (fill)						
 - -	5	18	14 30		2 <u>3</u> %F		 SM	Brown silty fi (medium	(stiff, moist 	um sand with occasional gravel ense, wet)	1	6	28	Perched groundwater observed at 7 feet at time of drilling
	- 10 — -	10	60		4		SM	- Gray silty fine till-like (v soils) -	e to mediun ery dense, r	n sand with occasional gravel; moist) (glacially consolidated	-			
	- 15 — - -	12	47		5			- - Till-like - -			-			
	- 20 —	4	50/4"		6			_ Till-like 			_			
	20 20 4 50/4" 6 6													
								Log	of Bor	ing GEI-1-17				
	Geo	οEι	NG	INE	ER	S/	D	Project Project	: Alder	wood South n: Lynnwood, Washing	gton			Figure A-2

Project Number: 12406-027-00

Date:12/13,

Figure A-2 Sheet 1 of 1

ſ	Drilled	11/2	<u>Start</u> 20/2017	<u>En</u> 11/20	<u>d</u>)/2017	Total Depth	ı (ft)	21.5	L	Logged By Checked By	PEB MAG	Driller	Geologic Dri	ill Exploratio	on, Inc.		Drilling Method Hollow-stem Auger			
	Surface Vertical	e Eleva Datur	ation (ft) m		NA	383 WD88			Ham Data	nmer a	14	Rope & C 10 (lbs) / 3	athead 0 (in) Drop		Drilling Equipn	hent	Deep Rock XL			
	Easting Northin	(X) g (Y)			128 30	36278 4416			Syste Datu	em um	W	/A State Pl NAD83	ane North (feet)		See "Remarks" section for groundwater observed					
l	Notes:																			
	Elevation (feet)	o Depth (feet)	Interval Recovered (in)	Blows/foot HI	Collected Sample	Sample Name Testing	Graphic Log	Group Classification			M/ DES	ATERIA CRIPTI	L ON		Moisture Content (%)	Fines Content (%)	REMARKS			
F_NO_GW	w ^w	0		4 10 24 3		1 MC %F 3		 PT SM 	- FI - B 	arades with i	soft to medium to medium de increased g	dium stiff, i n sand wit ense, wet) gravel cont vel (soft, m	noist) (recent	gravel	- 40 - 24 - 24 - 22	20	Perched groundwater observed at 4 feet at time of drilling			
DBLibrary/Library:GEOENGINEERS_DF_STD_US_JUNE_2017.GLB/GEI8_GEOTECH_STANDARD_%F.	si ⁰	 15 20		38		5		SM	- - - - - - - - -	aray silty fine very dens decomes mo	e to mediur se, wet) (gla vist to wet;	n sand wit acially cons till-like	h gravel (dens solidated soils	se to s) -			Grinding at approximately 15 feet			
ath:W:\PR0JECTS\12\12\12406027\GiNT\1240602700.GPJ	Not Coo	e: See rdinat	Figure A es Data S	-1 for e Source:	xplanatic Horizon	on of syr tal appro	nbols. oximat	ed basec	l on Ae	erial Imagery	y. Vertical a	approximat	red based on ' EI-2-17	Topograph	ic Surve	y.				
Date:12/13/17 F	G	ΞEO	οEι	NG	INE	ER	s /	D		Project Project	: Alder Locatic	wood S on: Lynr	outh wood, W	ashingt	on		Figure A-3			

Project Number: 12406-027-00

Figure A-3 Sheet 1 of 1

Drilleo	11/2	<u>Start</u> 20/2017	<u>En</u> 11/20	<u>d</u>)/2017	Total Depth	(ft)	20.5	Logged By Checked By	PEB MAG	Driller	Geologic Drill Explorat	ion, Inc		Drilling Method Hollow-stem Auger			
Surfac Vertica	e Eleva al Datu	ation (ft) m		N	383 AVD88			Hammer Data	14	Rope & Cat 0 (lbs) / 30	:head (in) Drop	Drillin Equip	Drilling Deep Rock XL				
Eastin Northi	g (X) ng (Y)			12 3(286299 04255			System Datum	W	A State Plar NAD83 (f	ne North eet)	See "I	Remark	s" section for groundwater observed			
Notes																	
\neg	FIELD DATA																
Elevation (feet)	b Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MATERIAL DESCRIPTION				Moisture Content (%)	Fines Content (%)	REMARKS			
-	-0	-					AC SM	<u>1 inch asphalt</u> Gray silty fine matter (loo	t concrete to mediun ose to med	pavement n sand with dium dense	gravel and organic , wet) (fill)	-		Grinding at approximately 1 foot			
- 	-	8	9		1 MC									Perched groundwater observed at 3 feet at time of drilling			
-	5-	14	14		2			Grades to with 	nout organ	ic matter							
_3 ¹⁵	-	18	4		<u>3</u> %F		SM	Gray silty fine to medium sand (very dense, wet) (recent deposits)				_ 18 _	44				
	10	18	52		4		SM	Gray silty fine to medium sand with gravel; till-like (very									
	- 15 — -	18	59		5			- Becomes wet; -	; till-like								
	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -											-					
No	Note: See Figure A-1 for explanation of symbols.																
								Log	of Bor	ing GE	1-3-17						
								Brojoot:	Aldon	wood So	uth						

GEOENGINEERS

Date:12/13/:

Alderwood South Project Location: Lynnwood, Washington Project Number: 12406-027-00

Figure A-4 Sheet 1 of 1

		Start	Enc	d	Total			Logged Bv PEB				Drilling
Drille	d 11/2	20/2017	11/20)/2017	7 Depth	(ft)	10.5	Checked By MAG	Driller Geologic Drill Explo	ration, Inc.		Method Hollow-stem Auger
Vertic	al Datu	m		Ν	VAVD88			Data 140	(lbs) / 30 (in) Drop	Equipn	hent	Deep Rock XL
Eastin Northi	ng (X) ing (Y)			1	286116 304260			System W4 Datum	State Plane North NAD83 (feet)	See "R	emark	s" section for groundwater observed
Notes	S:											
\bigcap			FIEL	D D/	ATA							
Elevation (feet)	Depth (feet)	Interval Recovered (in)	Blows/foot	Collected Sample	<u>Sample Name</u> Testing	Graphic Log	Group Classification	MA DESC	TERIAL CRIPTION	Moisture Content (%)	Fines Content (%)	REMARKS
-	-						GP SM	Fine gravel; compacted Brown and gray silty fine (medium dense, wet)	to medium sand with gravel (fill)			
- - -	-	10	11		1			-		-		Perched groundwater observed at 3 feet at time of drilling
-	5-	18	35		2	7.000	GM	Brown silty fine gravel wit matter (dense, moist	h sand and trace organic to wet)			
- - _3 ⁽⁵⁾	-	6	50/6"		3		SM	Brown silty fine to mediu (very dense, moist to soils)	n sand with gravel; till-like wet) (glacially consolidated	_		Grinding at approximately 8 feet
	10 —	6	50/6"		4			Becomes moist; till-like		_		
אוייר אינובא הפוא אינובא הרא היובריד אויוני אינובא אינובא אינובא אינובא אינובא אינובא אינובא אינו אינובא אינובא												
ייביי ייבייניאיז ערטיאיז אינייייייייי												
14/400/61 / 14/44 00/61 0		5 .2.2.1	15		tion of							
	ordinat	es Data	Source:	Horizo	ontal appro	oximat	ed based	on Aerial Imagery. Vertical ap	proximated based on Topogra	aphic Surve	ey.	
ath:w:/hr								Log of Bori	ng GEI-4-17			
Date:12/13/11 L	GE	οEι	NG	IN	EER	s /	D	Project: Alderv Project Location	vood South n: Lynnwood, Washir	igton		Figure A-5

Log of Boring GEI-4-17

Project: Alderwood South Project Location: Lynnwood, Washington Project Number: 12406-027-00

Figure A-5 Sheet 1 of 1

Drilleo	d 11/2	<u>Start</u> 20/2017	<u>En</u> 11/20	<u>d</u> D/2017	Total Depth	(ft)	20.5	Logged By Checked By	PEB MAG	Driller	Geologic Drill Explo	oration, I	nc.		Drilling Method Hollow-stem Auger
Surfac Vertica	e Eleva al Datu	ation (ft) m		NA	387 AVD88			Hammer Data	14	Rope & Ca 0 (lbs) / 30	thead (in) Drop	Dril Equ	lling uipm	ient	Deep Rock XL
Eastin Northi	g (X) ng (Y)			12 30	86023)4399			System Datum	W	A State Pla NAD83 (1	ne North eet)	Gro	ound	water	not observed at time of exploration
Notes															
			FIEL	D DA	TA										
n (feet)	eet)	ed (in)	oot	Sample	Name	Log	ation		MA		-		(%	(%	REMARKS
Elevation	Jepth (f	nterval Recover	3lows/fo	collected	ample esting	àraphic	aroup Classific		DES		Л	Anicture	content (ines ontent (*	
	0-			0			GP	Fine gravel		1.51			20	шO	
- -	-						SM	 Gray silty fine t moist) (fill) 	to medium	n sand with	gravel (dense,	_			
	-	6	34		1			_							
-															
-	5-	18	65		2		SM	Gray fine to me dense, moi	edium san ist) (glacia	d with grav Ily consolid	el; till-like (very ated soils)	_			
- 290	-							_				-			
_	-	18	59		3			_ Grades to brov	wn; till-like			_			
-	-	Д						_				_			
M 9 - 0	10 —	12	50/6"		4			 Till-like				_			
	-							_				_			
	-							-				_			
	-	-						-				_			
- - 	15 —	⊠ 4	50/4"		5			 Grades to gray	r; till-like			_			
	-	-						-				_			
	-							_							
	_	_						_				_			
y/ ribrary.u	20 —	0	50/4"		6			_				_			No recovery
0.00															
247T/ INID															
77000421															
No Co	ite: See ordinat	e Figure A es Data	-1 for e Source:	xplanati Horizor	on of syn ntal appro	nbols. oximat	ed based	on Aerial Imagery.	Vertical a	pproximate	d based on Topog	raphic Su	urvej	y.	
								Log	of Bor	ing GE	1-5-17				
	2-					c .		Project:	Alderv	wood Sc	wood Washi	noton			
	JF(١G	INE	EK) /					0000, Wasilli	INGLUIT			Figure A-6

Date:12/13,

Figure A-6 Sheet 1 of 1

Project Location: Lynnwood, Washington Project Number: 12406-027-00

3/1/ Path:W:\PHO.		_	_						Log of I Project: Al	Borir derwo	ng GEI-6-17 ood South			
JJECIS\12\12406027\GINI\1240602700.GPJ DBLID	No Co	te: See ordinat	e Figure A les Data :	-1 for ex Source:	xplanati Horizor	on of syn	nbols. oximat	ted basec	l on Aerial Imagery. Verti	ical app	proximated based on Topograp	hic Surve	₽y.	
ary/Library:GEOENGINEERS_L	-	- - 20 —	5	50/5"		6			- - Becomes moist			-		
DF_STD_US_JUNE_2017.GLB/GEI8_GEOTECH_	- - - - - -	- - 15 — -	5	50/5"		5			- Till-like -					
SIANDARD_%F_N0_GW	- - - -		18	34		4			Grades to gray, bec	comes v	wet; till-like	-		Grinding at approximately 9 feet Perched groundwater observed at 10 feet at time of drilling
	-	-	18	28		3		SM	Brown silty fine to r dense to very d soils)	medium dense, n	n sand with gravel (medium noist) (glacially consolidated	_		
	- %	5-	18	31	2 %F			Becomes moist to wet			15 	26		
		-	16	22		1		SM	Gray and brown sin trace organic m moist) (fill)	ty fine to natter (r	o coarse sand with gravel and nedium dense to dense,	-		
	မို့ Elevati	o Depth I	Interva Recove	Blows/	Collecte	Testing	Graphi	B Group G Classif	Fine gravel			Moistur	Fines Content	
	on (feet)	(feet)	l ered (in)	FIEL	d Sample	A	c Log	ication	D	MAT	ERIAL RIPTION	(%)	(%)	REMARKS
	Notes	:							1				1	
	Easting Northin	Easting (X) 1286108 Northing (Y) 304523					System WA State Plane North Datum NAD83 (feet) See "Ren			Remark	arks" section for groundwater observed			
	Surfac Vertica	Surface Elevation (ft) 386 Vertical Datum NAVD88				Hammer Rope & Cathead Data 140 (lbs) / 30 (in) Drop			Drilling Equipr	g ment	Deep Rock XL			
	Drillec	1 11/2	<u>Start</u> 20/2017	<u>Enc</u> 11/20	<u>d</u>)/2017	Total Depth	(ft)	20.5	Logged By PE Checked By MA	EB AG	Driller Geologic Drill Explora	tion, Inc.		Drilling Method Hollow-stem Auger

Project Number: 12406-027-00

Date:12/13

Figure A-7 Sheet 1 of 1

Drilled	<u>St</u> 11/20	<u>art</u> /2017	<u>Eno</u> 11/20	<u>1</u>)/2017	Total Depth	ı (ft)	2	Logged By PEB Checked By MAG	Driller Geologic Drill Exploration	on, Inc.		Drilling Method Hollow-stem Auger	
Surface Elevation (ft) 385 H Vertical Datum NAVD88 D								Hammer Rope & Cathead Data 140 (lbs) / 30 (in) Drop			nent	Deep Rock XL	
Easting (X) 1286185 Northing (Y) 304585								System WA State Plane North Datum NAD83 (feet) Groundwa			lwater	vater not observed at time of exploration	
Notes: Attempted boring at three different locations; each in close proximity													
FIELD DATA													
Elevation (feet)	o Depth (feet)	Recovered (in)	Blows/foot Collected Sample Sample Name Testing Graphic Log Group					MATERIAL DESCRIPTION			Fines Content (%)	REMARKS	
-	_						GP SM	Fine gravel, compacted					
								Driller observed quarry approximately 2 fee	spalls: encountered refusal at t below ground surface			I	
Noto	• Soo F	iduro A	1 for o	nlanati	on of our	nholo							
Note: Coord	: See F dinates	igure A- s Data S	-1 for ex Source:	kplanatio Horizon	on of syn ntal appro	nbols. oximat	ed based	on Aerial Imagery. Vertical a	ipproximated based on Topograph	ic Surve	y.		
Note: Coord	: See F dinates	igure A- S Data S	-1 for ex Source:	kplanatio Horizon	on of syn ntal appro	nbols. oximat	ed based	on Aerial Imagery. Vertical a	ipproximated based on Topograph	ic Surve	y.		

Project Number: 12406-027-00

Figure A-8 Sheet 1 of 1
APPENDIX B Boring Logs from Previous Explorations

APPENDIX B BORING LOGS FROM PREVIOUS EXPLORATIONS

Included in this section are logs from previous studies completed in the immediate vicinity of the project site.

- the logs of seven borings with monitoring wells (B-1 through B-3, and B-7 through B-10) completed by ZZA in 2008 for the Lynnwood Lift Station No. 8 Replacement project;
- the logs of one boring (AB-19A) and five borings with monitoring wells (AB-19B, and AB-20 through AB-23) completed by AMEC in 2008 for the Edmonds School District 2927 Alderwood Mall Blvd project;
- the logs of three borings (S-1 through S-3) completed by Landau in 1996; and
- the logs of one boring (MW-1) and four borings with monitoring wells (P2 through P5) completed by ECOVA in 1991 for the Edmonds School District Transportation Center project.

	LOG	OF BOF	RING	NO.	B-	1	and the state of the state				P	age 1 of 2
C	LIENT BHC Consultants											
SI	TE	<u></u>	PROJ	IECT								
	Lynnwood, WA			<u>Ly</u>	nnw	boot	Lift	Statio	on No.	8 Re	place	ment
RAPHIC LOG	DESCRIPTION BOREHOLE DIA.: WELL DIA.: TOP OF PROTECTOR PIPE: TOP OF CASING:	6 in 1 In 387.00 ft 387 ft	WELL DETAIL	EPTH, ft.	SCS SYMBOL	UMBER	PE	ECOVERY, In.	ows / ft.	ATER DNTENT, %	ELD VAPOR	
	GROUND SURFACE ELEV.: 0.5 2" Asphalt over 2-3" GRAVEL grav-black	387 ft			15	Ž	F	R	<u> </u>	Sõ		
	SILTY SAND , trace organics, with gravel gray-brown with iron oxide staining, very loose, wet (Fill)				SM	<u>S-1</u> S-2	GR SPT	<u>18</u> 18	1		ND	
	<u>SILTY SAND</u> , trace gravel, light gray with Iron oxide staining, medium dense, wet to saturated	<u>382</u>		5	SM	S-3	SPT	18	12	17	ND	Grain Size Analysis 46% passing No. 20 seive
The Market and	12 <u>SILTY SAND</u> , trace gravel, brown with some iron oxide staining, medium dense, saturated (Weathered Till)	375			SM	S-4	SPT	18	21		ND	
	15 GRAVELLY SAND , trace silt, gray-brown, dense, wet to saturated (Weathered Till)	372		15	SP	S-5 S	SPT	18	31	11	ND	
	SILTY SAND, with gravel, light gray to gray, very dense, moist (Till)	369.5			SM	S-6 S	SPT	18	58	11	ND	
	20 Continued Next Dage	367		20								
he	stratification lines represent the approximate boundary lines				* ND	indica	tes a i	reading	of less	than the	e field d	etection limit
				(FD	L) of	one (1) part	per mi	illon isot	outylene	equiva	lents (ppmi).
		Zipper 7ems		nhas in		BOR		SIAF				3-31-08
VL.	¥ ¥	Geotactinical on	d Environme	ntol Cons.	witting	BUR		LOM k me				3-31-08
/L		· · · ································				100	CED	K-1110	Me A		4 4	EUI
		1.40				LOG	JED		NON	JUD	11 C	01070133

			LOG	OF BO	RING	NO.	В	-1					P	age 2 of 2
		BHC Consultant	5											
S	ITE	Lynnwood, WA			PRC	JECT	VEIDA	vood	1 111	Stati	ion No	8 Pa	nlace	mont
									SA	MPLE	S	. 0 110	TE	RTS
GRAPHIC LOG		DESCRIPTIC	Ю		WELL	DEPTH, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, In.	SPT - N BLOWS / ft.	WATER CONTENT, %	FIELD VAPOR TEST (PPM)*	
	<u>GRAVE</u> very de	<u>ELLY SAND</u> , trace sil nse, wet (Till)	t, light gray,	362			SP	S-7	SPT	3	50/6"		ND	
	28 <u>SAND</u> , dense, Borehol				SP	S-8	SPT	5	50/5"	12	ND			
The betw WA	stratification lines rates and soil and rock ty TER LEVEL OB	present the approximate b pes: in-situ, the transition SERVATIONS, ft	al.		(FD	* ND)L) of	indicat one (1) BOR	es a n part p	eading per mil	of less filion isob	than the utylens	field de equival	tection limit ents (ppmi). 3-31-08	
WL.	¥ 10 \ ¥	Zipper Zema Geotechnical an A Tierracon C	in <u>Associ</u> d Environme Company	icites. in enfol Cons.	<u>c.</u> Attag	BOR	ING (Fruci	COM	PLETE	D		3-31-08		
WL								LOG	GED		MSA	JOB #	¥ 8	1075133

	LOG	of Bor	RING	NO.	B-	2					p	age 1 of 2
C	LIENT BHC Consultants											
SI	TE		PROJ	ECT								
-	Lynnwood, WA		 	Ly	nnw	rood	Lift S	Stati	on No.	8 Re	place	ment
	DESCRIPTION BOREHOLE DIA.: WELL DIA.: TOP OF PROTECTOR PIPE: TOP OF CASING: GROUND SURFACE ELEV.:	6 in 1 In 385,00 ft 385 ft 385 ft	WELL DETAIL	DEPTH, ft.	USCS SYMBOL	NUMBER	24V	RECOVERY, In.	SPT - N BLOWS / ħ.	WATER CONTENT, %	FIELD VAPOR TEST (PPM)*	STS
	A0.25 2-3" GRAVEL , with sand, gray, loose,	385	12	_	{							
	<u>GRAVELLY SAND</u> , with silt, occasional wood debris in cuttings, brown, medium dense, moist to wet (Fill)				SP SM	S-1	SPT	18	14	12	ND	
	<u>SANDY SILT</u> , trace organics and gravel, gray-black, medium stiff, wet to saturated	▼ 373		5 	ML	S-2	SPT	18	7	29	ND	Grain Size Analysis 56% passing No. 200 selve
	SILTY SAND , with gravel, gray, loose, saturated			-	SM	S-3 S	SPT	18	4	12	ND	Grain Size Analysis 26%
	grades to medium dense	368		15	SM	S-4 S	SPT	18	21	12	ND	passing No. 200 seive
	SILTY SAND , trace gravel, light gray, dense, moist to wet (TIII)				SM	S-5 S	PT	18	48	12	ND	200 Wash 40% passing No. 200 seive
184 83	Continued Next Page			20								
The s	stratification lines represent the approximate boundary lines een soil and rock types: In-situ, the transition may be gradual.			(FD	* ND L) of a	indicat	es a n	eading) of less	than the	equive	etection limit
WA	TER LEVEL OBSERVATIONS, ft					BOR	ING	STAF	RTED		SHOLAD	3-31-08
WL	¥ 11.5 WD ¥ 7.35 5/1 776 3	Sected trian		ites, inc		BOR	ING	COM	PLETE	Ð		3-31-08
WL	¥ ¥ [ŽŠŠŠ	A Tierracon C	empany	., we we have	an af	RIG	Truck	k-mo	unted	CO.		EDI
WL						LOG	GED		MSA	JOB	# \$	31075133

ZZA WELL BORING LOGS.GPJ TERRACON.GDT 8/7/08

	LOG OF BO	RING	NO.	B	-2					P	age 2 of 2
	BHC Consultants										
S	Lynnwood, WA	PRO	JECT	עמומע	wood		Stati	an Ma	0 D		
1						SA	MPLES	S NO.		place TE	ment STS
GRAPHIC LOG	DESCRIPTION	WELL DETAIL	DEPTH, R.	USCS SYMBOL	NUMBER	ТҮРЕ	RECOVERY, in.	SPT - N BLOWS / ft.	WATER CONTENT, %	FIELD VAPOR TEST (PPM)*	
	<u>GRAVELLY SAND</u> , with silt, gray, very dense, wet (Till)		- - - - - - - - - - - - - - - - - - -	SP	S-6	SPT	18	55		ND	
	28.5 356.5 Borehole completed at 28.5' on 3/31/08			SP SM	S-7	SPT	10	50/5"	10	ND	
	а Т										
The	stratification lines represent the approximate boundary lines			* ND	indicat		ading	of less t	han the	field de	tortion limit
	sen son and rock types: in-situ, the transition may be gradual.		(FD	L) of	one (1)	part p	per mill	ion isobi	utylene	equivale	ents (ppml).
NI	V 115 WD V 725 FM 776				BOR	NG S	STAR	TED			3-31-08
NL	V V - 7.35 5/1 Geotechnical an	d Environmén	nes, inc nol Consu	iting	BOR	NG	COM	PLETE	D		3-31-08
VL		ланфаяу			KIG]	ruck	K-mol	Inted	CO.		EDI
			_		LUG(sED		MSA	JOB #	F 8	1075133

CLENT BHC Consultants STE Lynnwood, WA DESCRIPTION BORENDE DIA:: VELU STE DESCRIPTION BORENDE DIA:: VELU VELU STE OF CONSIGE: STE OF CONSIGE: STE STE OF CONSIGE: STE STE <th colspan<="" th=""><th></th><th>LOG</th><th>OF BOF</th><th>RING</th><th>NO.</th><th>B-</th><th>3</th><th></th><th></th><th></th><th></th><th>F</th><th>Page 1 of 3</th></th>	<th></th> <th>LOG</th> <th>OF BOF</th> <th>RING</th> <th>NO.</th> <th>B-</th> <th>3</th> <th></th> <th></th> <th></th> <th></th> <th>F</th> <th>Page 1 of 3</th>		LOG	OF BOF	RING	NO.	B-	3					F	Page 1 of 3
SITE Lynnwood, WA PROJECT 00 DESCRIPTION VIEL 00 AVAPLES TESTS 00 DESCRIPTION 6 in STAT VIEL 00 VIEL 00 VIEL VIE	CL.	IENT BHC Consultants												
Operation Continued Next Page Continued Next Page Continued Next Page 0 SILTY SAND, trace gravel, gray-brown, medum dense, saturated \$377.00 mmedum dense, saturated \$377	SIT			PROJ	ECT	rim im t.e		1.104.0	04-41		0.0.			
OT DESCRIPTION Image: Second					<u>Ly</u>	THIN	1000	SAL	JUBI ES	<u>on no</u>	. 3 Ke	place	ere	
SILTY SAND, trace gravel, light brown with iron oxide staining, loose, wet to saturated (Fil) SM S-1 SPT 12 7 17 ND SILTY SAND, trace gravel, gray-brown, medium dense, saturated \$\$ <td< td=""><td>GRAPHIC LOG</td><td>DESCRIPTION BOREHOLE DIA.: WELL DIA.: TOP OF PROTECTOR PIPE: TOP OF CASING: GROUND SURFACE ELEV.:</td><td>6 in 1 in 387.00 ft 387 ft 387 ft</td><td>WELL DETAIL</td><td>DEPTH, ft.</td><td>USCS SYMBOL</td><td>NUMBER</td><td>ТҮРЕ</td><td>RECOVERY, in.</td><td>SPT - N BLOWS / ft.</td><td>WATER CONTENT, %</td><td>FIELD VAPOR TEST (PPM)*</td><td>-</td></td<>	GRAPHIC LOG	DESCRIPTION BOREHOLE DIA.: WELL DIA.: TOP OF PROTECTOR PIPE: TOP OF CASING: GROUND SURFACE ELEV.:	6 in 1 in 387.00 ft 387 ft 387 ft	WELL DETAIL	DEPTH, ft.	USCS SYMBOL	NUMBER	ТҮРЕ	RECOVERY, in.	SPT - N BLOWS / ft.	WATER CONTENT, %	FIELD VAPOR TEST (PPM)*	-	
S ¥ 382 5 -		2" <u>SANDY GRAVEL</u> , brown, loose, mois (Fill) <u>SILTY SAND</u> , trace gravel, light brown with iron oxide staining, loose, wet to saturated (Fill)	st <u>387</u>			SM	S-1	SPT	12	7	17	ND		
I2 375 SILTY SAND, trace gravel, gray, very dense, molst (Till) SILTY SAND, trace gravel, gray, very dense, molst (Till) SM S-3 SPT SM S-3 SPT SM S-4 SPT SOM SOM SOM SOM SOM SOM SOM SOM SOM SOM SOM SOM SOM SOM <td></td> <td>5 <u>SILTY SAND</u>, trace gravel, gray-brown, medium dense, saturated</td> <td><u>382</u></td> <td></td> <td>5</td> <td>SM</td> <td>S-2</td> <td>SPT</td> <td>18</td> <td>15</td> <td>14</td> <td>ND</td> <td>Grain St Analysia 34% passing No. 200 seive</td>		5 <u>SILTY SAND</u> , trace gravel, gray-brown, medium dense, saturated	<u>382</u>		5	SM	S-2	SPT	18	15	14	ND	Grain St Analysia 34% passing No. 200 seive	
Continued Next Page SM S-4 SPT 8 50/5" 10 ND Grain Si: Analysi 32% passing No. 200 20 20 20 ND indicates a reading of less than the field detection line (FDL) of one (1) part per million isobutylene equivalents (ppm) VATER LEVEL OBSERVATIONS, ft Image: Continued Next Page SM SM<		<u>SILTY SAND</u> , trace gravel, gray, very dense, molst (Till)	<u>⊽</u> 375			SM	S-3 \$	SPT	18	50/5"	10	ND		
he stratification lines represent the approximate boundary lines etween soil and rock types: in-situ, the transition may be gradual. * ND indicates a reading of less than the field detection lin (FDL) of one (1) part per million isobutylene equivalents (ppm VATER LEVEL OBSERVATIONS, ft /L ¥ 11 WD ¥ 4.78 5/15 /L ¥ 11 WD ¥ 4.78 5/15 Zipper Zeman Associates, Inc. Geotechnical and Brytenmental Consulting A Tierracon Company BORING STARTED 4-1-0 BORING COMPLETED 4-1-0 RIG Truck-mounted CO.		Continued Next Page			20-	SM	S-4 S	SPT	8 5	50/5"	10	ND	Grain Siz Analysis 32% passing No. 200	
VATER LEVEL OBSERVATIONS, ft /L Y Image: Construction of the construct	he st etwe	ratification lines represent the approximate boundary lines en soil and rock types: in-situ, the transition may be gradua	al.		(FD	* ND L) of (indicat	es a n) part r	eading	of less	than the	equive	letection limi	
/L ¥ 11 WD ¥ 4.78 5/15 /L ¥ ¥ /L ¥ ¥ /L ↓ ¥ /L ↓	VAT	ER LEVEL OBSERVATIONS, ft					BOR	ING	STAF	RTED	3.910110		/_1.00	
Image: A line and the second device of the second devic		¥ 11 WD ¥ 4.78 5/15 ZZA	Zipper Zema	n <u>Associa</u>	ites, inc		BOR		COM				A 1 00	
			Geotechnical one A Tierracon G	Environmen Onligany	itol Censu	Ming	RIG	Truck	- mo	unted			4-1-00	
	11			· · · · · · · · ·			100		VIIIU	MOA	100.	4 4	ED	

		LOG OF BOI	RING	NO.	B	-3					P	age 2 of 3
	BHC Consultants											
SIT	E Lynnwood WA		PRO	JECT			1 144	04-4		0.0.		
				<u>_</u>		NOOD	SA	MPLE	on No S	. 8 Re	place TE	ment STS
GRAPHIC LOG	DESCRIPTION		WELL	OEPTH, ñ.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in.	SPT - N BLOWS / ft.	NATER CONTENT, %	FIELD VAPOR	
	SILTY SAND trace ground grou											seive
	dense, moist (Till)	y, very		-	SIM	5-5	SPI	4	50/5"		ND	
	grades to wet			25—	SM	S-6	SPT	4	50/5"	10	ND	
	26	361		-	-							
	SANDY GRAVEL , with silt, gray dense, wet to saturated (Till)	r, very			GP GM	S-7	SPT	4	50/4"		ND	
3	2.5 SAND , with silt and gravel, gray dense, wet (Till)	354.5 , very		35	SP	S-8	SPT	4	50/4"	12	ND	
40	Continued Next Pag			40	SP SM	S-9 \$	SPT_	5 (50/5"		ND	
The str	atification lines represent the approximate bour	idary lines		1	* ND	indica	tes a n	eadino	of less i	than the	e field de	tection limit
OOWOC	en soil and rock types: in-situ, the transition may	y be gradual.		(FE	L) of	one (1) part p	per mil	lion isob	utylene	equival	ents (ppmi).
	11 WD X 4 79 546	ZZA		atas la		BOR	ING S	STAF	RTED			4-1-08
VL I	<u>V</u>	Geotechnicat and	Environme	nial Const	c. Vilingi	BOR		COM	PLETE	D		4-1-08
VL			an dan 18			RIG		(-mo	unted	00.		EDI
						LUG	GED		IVISA		₩ 8	70/5133

		LOG OF BOF	RING	NO.	B	3					Р	age 3 of 3
CLIEN	BHC Consultants											
SITE	Lynnwood WA		PRO	JECT		raad		Chedi	an Ma	0.0		
	,,,			y		1000	SAI		on NO	. 8 Ke	place TE	ment ete
GRAPHIC LOG	DESCRIPTION		WELL DETAIL	DEPTH, A.	USCS SYMBOL	NUMBER	ТҮРЕ	RECOVERY, In.	SPT - N BLOWS / ft.	WATER CONTENT, %	FIELD VAPOR TEST (PPM)*	
43	SANDY SILT , with gravel, gray	, hard, 344			ML	S-10	SPT	18	49	13	ND	
49	<u>SILTY SAND</u> , trace gravel, gray dense, moist to wet (Till) Borehole completed at 49' on 4/	/, very 			SM	S-11	SPT	14	50/4"		ND	
The stratil	lication lines represent the approximate bour	ndary lines			* ND	Indicate	esan	eading	ofless	than fbe	tield de	atection Emit
between s	soil and rock types: In-situ, the transition ma	y be gradual.		(FD	L) of	one (1)	part	per mil	lion Isob	utylene	equival	ents (ppmi).
	LEVEL OBSERVATIONS, ft	778 -				BOR	NG	STAF	RTED			4-1-08
VL ¥ 1	11 WD ¥ 4.78 5/15	Zipper Zemain Geotechnical and	Assock Environme	ates, inc	ting	BOR	NG	COM	PLETE	D		4-1-08
VI		A Retraction Co	mpany			RIG 1	Fruci	k-mo	unted	CO.		EDI
						LOG	GED		MSA	JOB i	# 8	1075133

	LOG	OF BOF	RING	NO.	B-	7						lone t of
CL	IENT DUO O											aye 1 or
SI	BHC Consultants			FCT								
	Lynnwood, WA		PROJ	Ly	ทกพ	/ood	Lift S	Static	on No	. 8 Re	place	ement
					Τ		SAN	IPLES	3		TE	STS
GRAPHIC LOG	DESCRIPTION BOREHOLE DIA.: WELL DIA.: TOP OF PROTECTOR PIPE: TOP OF CASING: GROUND SURFACE ELEV.: 9" Asphalt	6 in 1 in 385.50 ft 385.5 ft 385.5 ft	WELL DETAIL	DEPTH, ft.	USCS SYMBOL	NUMBER	ТҮРЕ	RECOVERY, in.	SPT - N BLOWS / ft.	WATER CONTENT, %	FIELD VAPOR TEST (PPM)*	,
***	0.8 SILTY SAND with gravel brown loose	384.5		-								
	damp (Fill) grades to light brown, medium dense, damp to wet (Fill)				SM	S-1	SPT	12	12		340	
	grades to gray-brown, saturated, very dense (Possible Fill)	¥ 376.5		5	SM	S-2	SPT	18	61	9	170	
	<u>SILTY SAND</u> , trace gravel, blue-gray, hard, damp (Till)			10	SM	<u>S-3 S</u>	3PT 3PT	4 5	50/4" 50/5"	6	ND	200 Was
	grades to moist to wet	⊻			ŚM (S-5 S	:PT	3 5	0/5"	7	ND	31% passing No. 200 seive
	20	365.5		20-								
	Continued Next Page											
ne si etwe	reastication lines represent the approximate boundary lines en soil and rock types: in-situ, the transition may be gradue	ai.		(FD	* ND L) of (indicat	es a re part r	ading er mill	of less	than the	e field o	letection lim
/AT	ER LEVEL OBSERVATIONS, ft			()	Ī	BOR	ING S	STAR	TED		-40146	4-2-0
'L	¥ 17.5 WD ¥ 5.55 5/15	Zipper Zemai	Associa	tes, inc		BOR	ING (COMF	PLETE	D		4-2-0
L	¥ ¥	A Tierracon C	i Etivinarimen ontipany	roi Consul	Wing	RIG	Fruck	-mou	unted	CO.		ED
L						LOG	GED		MSA	IOB	# 5	

	LOG OF BOP	RING	NO.	B-	7					P	age 2 of 2
	BHC Consultants										
sr	TE Lynnwood WA	PROJ	ECT		in a d		04-41	-			· · · · · ·
-				I BE I WY	000	SAJ	MPLE	on No S	. 8 Re	Place TE	ment STS
GRAPHIC LOG	DESCRIPTION	WELL DETAIL	DEPTH, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, In.	SPT - N BLOWS / ft.	WATER CONTENT, %	FIELD VAPOR TEST (PPM)*	
	SILTY SAND , with gravel, gray, very dense, moist to wet (Till)			SM	S-6	SPT	6	50/6"	10	ND	
	28 357.5 Borehole completed at 28' on 4/2/08			SM	S-7 \$	SPT	0	50/5"		ND	52
The st	ratification lines represent the approximate boundary lines en soil and rock types: in-situ, the transition may be gradual.		(FDL	ND ii	ndicate	es a re	ading	of less t	han the	field de	tection limit
WAT	ER LEVEL OBSERVATIONS, ft				BORI	NG S	TAR	TED			4-2-08
WL I	17.5 WD \$ 5.55 5/15 2/6 Zipper Zemain	Associa	les. Inc.		BORI	NG C	OMF	PLETE	D		4-2-08
WL S		unipany	o carbur		RIG T	ruck	-mou	Inted	CO.		EDI
IVL					OGG	BED		MSA	JOB #	81	075133

		LOG OF BOP	RING	NO.	B-	8					P	ade 1 of 2
CL	IENT BHC Consultants											
SI	TE Lummun d MA		PROJ	ECT								
	Lynnwood, wa			Ly	<u>nnw</u>	<u>/ood</u>	Lift SAN	Stati	on No	. 8 Re	place	ment
GRAPHIC LOG	DESCRIPTION BOREHOLE DIA.: WELL DIA.: TOP OF PROTECTOR PIPE: TOP OF CASING: GROUND SURFACE ELEV.:	6 in 1 in 388.00 ft 388 ft 388 ft	WELL DETAIL	DEPTH, ft.	USCS SYMBOL	NUMBER	түре	RECOVERY, In.	SPT - N BLOWS / ft	WATER CONTENT, %	FIELD VAPOR TEST (PPM)*	
	SILTY SAND , with gravel, brown wet to saturated (Fill) grades to blue-gray with iron oxid loose (Possible Fill)	, loose, ↓ loose, le staining, 383			SM	S-1	SPT	14	5		ND	
	<u>SILTY SAND</u> , with gravel, brown, dense, wet	medium		3 	SM	S-2	SPT	14	18	10	ND	Grain Size Analysis 20% passing No. 200 seive
	<u>SILTY SAND</u> , with gravel, gray-browith iron oxide staining, dense, we (Weathered Till) 14.5 <u>SILTY SAND</u> , with gravel, gray, verdense, moist (Till)	own et			SM	S-3 S	SPT	12	47	10	ND	
					SM S	S-5 S	;PT ·	13 5	50/6"	9	ND	
he st	Continued Next Page	and lines										
etwe	en soil and rock types: in-situ, the transition may t	ary lines De gradual.		(FD	* ND i L) of c	indicat	es a re) part p	er mil	l of less	than the utylene	equival	etection limit lents (ppmi).
VAT	ER LEVEL OBSERVATIONS, ft				Τ	BOR	ING S	STAF	RTED			4-3-08
	¥ 2.5 WD ¥ 2.79 5/1	Geolischritcol and	n Associa Environmen	tes, Inc tol Consul	i. Ningi 🛛	BOR	ING (COM	PLETE	D		4-3-08
	÷ ¥	A Timracon C	ompany			RIG	Fruck	-mo	unted	CO.		EDI
<u> </u>						LOG	GED		MSA	JOB	# 8	1075133

		LOG OF BOP	RING	NO.	B-	8					P	age 2 of 2
Ľ	GEI	BHC Consultants										
	SIT	E	PROJ	ECT			1 1.64	D4-41				
		5/11/1000, 17A		<u></u>	Innw	000	LIΠ : SAI	MPLE	on No. S	. 8 Re	place TE	ment STS
		DESCRIPTION	WELL DETAIL	DEPTH, A.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in.	SPT - N BLOWS / ft.	WATER CONTENT, %	FIELD VAPOR TEST (PPM)*	
		<u>SILTY SAND</u> , with gravel, gray, very dense, moist (Till)			014	0.0	0.077					
		3		_	5101	5-0	501	8	50/2"		ND	
		8.5 359.5 Borehole completed at 28.5' on 4/3/08		25	SM	S-7 \$	SPT	12	50/6"	10	ND	
bet	Nee	n soil and rock types: in-situ, the transition may be gradual.		(FDL	ND i	ndicate	es a re part p	eading	of less t ion isob	han the utylene	field de equivale	tection limit ents (ppmi).
WL	\Ţ Ţ	25 WD ¥ 279 5/4 ZZA	Amont			BORI	NG S	TAR	TED			4-3-08
WL	X	LIDDET Z.13 0/1 Geotectilaciano	Environment	res. Inc. Ind Consul	ing	BORI	NG (PLETE	D		4-3-08
WL					ľ	.060	FUCK	-11101	MSA	JOB #	ŧ 8 [.]	EDI 1075133

ZZA WELL BORING LOGS.GPJ TERRACON.GDT 8/7/08

		LOG O	F BO	RING	NO.	B-	9					P	age 1 of 2
·C	LIENT BHC Consultants												
S	TE			PROJ	ECT		ined	144 (0 De		
							1000	SAN	JUDIES	on NO. S		place TE	STS
GRAPHIC LOG	DESCRIPTION BOREHOLE DIA.: WELL DIA.: TOP OF PROTECTOR PIPE: TOP OF CASING: GROUND SURFACE ELEV.:		6 i 1 i 388.00 388 388	WELL DETAIL	DEPTH, A.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in.	SPT - N BLOWS / ft.	WATER CONTENT, %	FIELD VAPOR TEST (PPM)*	
	SILTY GRAVEL, with sand, brow	vn to		5	-	-							
	black, damp (Fill)					1							
	SANDY SILT , with gravel, gray-b stiff, wet to saturated (Fill)	prown,	38	8		ML	S-1	SPT	14	9		ND	
			Ā		5								
	7		381										
	<u>SILTY SAND</u> , trace gravel, browr wet to saturated (Possible Fill)	n, dense,				SM	S-2	SPT	0	35	13	ND	Grain Size Analysis 47%
	13 grades to very dense				10	SM	5-3	2PT	9	50/6"		ND	passing No. 200 seive
							0-0 0	<u> </u>		50/0			
	SILTY SAND, with gravel, gray-brover very dense, damp to moist (Weath	own, hered Till)			15	SM	S-4 S	SPT	12	50/6"	8	ND	
	grades to wet		369			SM	S-5 S	PT	8 8	50/3"	8	ND	
LING	Continued Next Page			지금지	20-								
The s	tratification lines represent the approximate bound	ary lines			/80	* ND	indicat	es a re	eading	of less	than the	e field d	etection limit
WA	ER LEVEL OBSERVATIONS. ft				(FD	יביסו	BOP	ING 4	STAP		utylene	equiva	ents (ppmi).
WL	¥ 5 WD ¥ 3.20 5/1		oper Zem	an Associa	ites, Ind	<u>.</u>	BOR	ING	COM	PLETE	D		4-3-08
WL	Ā Ā		creenijsale Tierrezan	nd Environmei Company	ntal Consu	Aling	RIG	Truck	(-mo	unted	CO.		EDI
WL							LOG	GED		MSA	JOB	# 8	1075133

ZZA WELL BORING LOGS.GPJ TERRACON.GDT 8/7/08

	LOG	OF BORING	NO.	B-	9		_			P	age 2 of 2
C	BHC Consultants										
S	ITE Lynnwood, WA	PRO	JECT	(12) (2) (2)		1 164	<u>Qtati</u>	on No	0 Do		
			<u>y</u>		1000	SAI	MPLE	S S	. o ke	place	ITTENT.
GRAPHIC LOG	DESCRIPTION	WELL DETAIL	DEPTH, ft.	USCS SYMBOL	NUMBER	ТҮРЕ	RECOVERY, In.	SPT - N BLOWS / ft.	WATER CONTENT, %	FIELD VAPOR TEST (PPM)*	
	<u>SILTY SAND</u> , with gravel, gray, very dense, damp to moist (Till)			SM	S-6	SPT	6	50/6"	7	ND	
	28.5 Borehole completed at 28.5' on 4/3/08	359.5		SM	S-7	SPT	0	50/3"		ND	
	stratification lines represent the approximate boundary lines reen soil and rock types: In-situ, the transition may be gradual		(FD	* ND L) of (indicat one (1) BOR	es a h part j	eading per mil	of less lion isob	than the utylene	a field de	stection limit ents (ppmi).
The s betwo WA	TER LEVEL OBSERVATIONS, ft							No. of Concession, Name			<u></u>
The s betwo WA	Image: TER LEVEL OBSERVATIONS, # Image: WD	pper Zeman Associe	ates. Inc		BOR	ING	COM	PLETE	D		4-3-08
The s betwo WAT WL	Image: TER LEVEL OBSERVATIONS, ft Image: State Sta	DDer Zeman Associe solechnical and Environme Minnscon Company	at<u>es</u>, inc ntal Consu	inng i	BOR RIG	ING (Fruci	COM k-mo	PLETE	D CO.		4-3-08 4-3-08 EDI

	LOG	OF BOR		10.	B- 1	10					P	age 1 of 2
CL	IENT BHC Consultants							9				
SI	E E		PROJ	ECT								
	Lynnwood, WA			Ly	nnw	rood	Lift	Stati	on No.	. 8 Re	place	ment
GRAPHIC LOG	DESCRIPTION BOREHOLE DIA.: WELL DIA.: TOP OF PROTECTOR PIPE: TOP OF CASING: GROUND SURFACE ELEV.:	6 in 1 in 386.00 ft 386 ft	WELL DETAIL	DEPTH, ft.	USCS SYMBOL	NUMBER	SAI	RECOVERY, in.	SPT - N BLOWS / ft.	NATER CONTENT, %	FIELD VAPOR FIEST (PPM)*	STS
	9.3 2.5" Asphalt 1 <u>SILTY GRAVEL</u> , with sand, brown, loose (Fill) <u>SILTY SAND</u> , with gravel, gray-brown, very loose, damp (Fill)	385.5			SM	S-1	SPT	18	2		ND	
	<u>SILTY SAND</u> , with gravel, gray-brown, medium dense, wet to saturated	⊻ ▼ 375		5	SM	S-2	SPT	18	28	10	ND	Grain Size Analysis 23% passing No. 200 seive
	SILTY SAND, with gravel, gray-brown with iron oxide staining, dense, moist (Weathered TIII) 14.5 SILTY SAND, with gravel, gray, very dense, moist (Till)	371.5			SM	S-3	SPT	18	48		ND	
	Continued Next Page				SM	<u>5-4</u> S-5 S	SPT SPT	8	50/6"	9 7	ND	
he s	tratification lines represent the approximate boundary lines				* ND	indice	tes e r	niheer	1 of less	than the	a field d	ataction limit
ətwə	en soil and rock types: In-situ, the transition may be gradual			(FD	L) of t	one (1) part	per mi	llion isot	outylene	equiva	election limit lents (ppmi).
	ER LEVEL OBSERVATIONS, ft				Ţ	BOR	ING	STAF	RTED			4-3-08
	¥ 7 WD ¥ 8.54 5/1	Zipper Zema Geotechnical and	n Associa Environmen	i tes, înc ital Consu	ing .	BOR	ING	COM	PLETE	D		4-3-08
· - ·	÷	A Tierrecon C	ompany			RIG	Truc	k-mo	unted	CO.		ED
L						LOG	GED		MSA	JOB	# 8	31075133

	LOG OF BOR	RING I	NO.	B-1	10						
C	BHC Consultants									P	age 2 of 2
S		PROJ	ECT								
-	Lynnwood, wA		Ly	<u>'nnw</u>	lood	Lift :		on No). 8 Re	place	ment
GRAPHIC LOG	DESCRIPTION	WELL	DEPTH, [#] .	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in.	SPT - N BLOWS / A.	NATER SONTENT, %	FIELD VAPOR	10
	<u>SILTY SAND</u> , with gravel, gray, very dense, moist (Till) grades to trace gravel, damp to moist (Till)			SM	S-6	SPT	3	50/3"		ND	Gravelly
			25								drilling
'he s etw	stratification lines represent the approximate boundary lines sen soll and rock types: in-situ, the transition may be gradual.		(EDI	ND ir	ndicate	s a re	ading	of less i	than the t	field det	ection limit
VAT	ER LEVEL OBSERVATIONS, ft				BORIN	VG S	TAR		чтілеце е	quivale	1.2 00
/L	¥ 7 WD ¥ 8.54 5/1 774 Zipper Zeman	Associat	es, inc.		BORIN		OMF		D		4-3-08
/L	Cessiscontrilical and A Therreaction Co	Environmentik Inipany	of Consult	ng F	RIG T	ruck	-mou	inted	<u> </u>		FD!
Ľ				Ē	.OGG	ED		MSA	JOB #	81	075133

o DEPTH (ft bgs)	CRAPHIC I CC	USCS SYNBOL	SOIL DESCRIPTION	SAMPLE	BLOW COUNT SPT N VALUE	VOLATILE READING (ppm)	GROUNDWATER	FIELD AND LABORATORY TESTING	WELL SCHEMATIC		
			Stiff, molst, gray and brown, SiLT with some sand and fine to	-							
			Becomes dark brown to 1.7 feet Becomes gray and brown intermixed to 1.85 feet Becomes gray and with scattered to numerous charcoal pleces to 2.2 feet		15	0.6					
-5-		ML ML ML	Approximately 0.1 feet moist, gray, fine SAND Stiff, moist, gray with rust motiling and oxidation staining, SILT with fine sand / sandy SILT with fine to medium grave! and scattered organics (roots) Stiff, moist, gray and brown, SiLT with some sand and fine to / medium gravel, and scattered organics		25	0.4		AB19_04			
-		SM	Stiff, moist, gray, SILT with fine sand / sandy SILT with fine / to medium gravel and scattered organics (roots) Medium dense, moist, gray and brown motiled with oxidation staining, slity, fine to medium SAND with trace to some fine to medium gravel; (Glacial Till)		41	0.3					
			Becomes dense	l	50/6	0.3					
		GM	Dense, molst, gray with oxidation staining, silty, sendy, finc to medium GRAVEL; (Glactal Till)		55/4 50/3	0.1 0.1					
15			Exploration terminated at approximately 12.5 feet below the existing ground surface (bgs). No sheen observed in soil or groundwater. No odor observed in soll or groundwater. Groundwater not observed. Consistancy and relative density determined based on a Dames & Moore sampler and a 140 pound hammer. Blow counts not converted.								
BORI	ig nii	THOD	HSA ELEVATION REFERENCE: NA	······································		<u>f</u>					
BORE	HOLE	DIAM	ETER: 8.25 (in) GROUND SURFACE ELEVATION: 384	føet		REMA	iks:				
DRILL	RIG:	NA	CASING ELEVATION: NA								
CONTRACTOR: Cascade Drilling START CARD/TAG ID: NA											
1000			DRILLING DALES: 01/16/2008 - 01/16/2	800							
Edmi Aldei 7-915	onds woo	s Scho od Ma 182-B	bol District - 2927 I Bivd. Lynnwood, WA USA 98034 Tei (425) 820-4669	ntai, In 100	c.	30	ne	ec	LOG OF BORING AB-19A		
			Fax (425) 821-3914						PAGE 1 OF 1		

-

ENVR+WELL BORING ESDMAT.GPJ AMEC PORTLAND.GDT 4/7/08

	a DEPTH (# bgs)	GRAPHIC LOG	USCS SYMBOL	Soil des	CRIPTION	SAMPLE	BLOW COUNT SPT N VALUE	VOLATILE READING (ppm)	GROUNDWATER	FIELD AND LABORATORY TESTING	w	ELL SCHEMATIC
			SM / ML SM SP SM	Exploration advanced to approground surface without sampli Surface cuttings: loose to med gray, fine to medium gravel	admately 5.5 feet below the ng; see AB-19A. lium dense, damp to moist, stiff, wet, gray and brown, andy SiLT addetion staining, slity, fine to <u>dium gravel</u> a with oxidation stainining, fine race slit and trace fine gravel intermixed with oxidation race fine to coarse gravel oximately 9.0 feet below the No sheen observed in soil or d in soil or groundwater. to 9 feet bgs. ty determined based on a 140 pound hammer. Bolw 712 feet southwest of AB-19A dd surface elevation fer than AB-19A.	daves	26 55/6 50/6 50/6	1.0 1.3		FIELD FIELD		- Flush Mount Monument - Cement Grout - Bentonite Chips - 2/12 Sand - Screen - PVC Endcap in 2/12 Sand
CO CO	NTRA	сто	R: Ca	scade Driffing STAF	RT CARD/TAG ID: /BAB 054							
	OGGED BY: LME DRILLING DATES: 01/17/2008 - 01/17/2008											
Edi Ald 7-9	mon Ierw 15-1	ids : 000	Schoi I Mali 12-B	ol District - 2927 Blvd. Lynnwood, WA	AMEC Earth and Environme 11335 NE 122nd Way, Suite Kirkland, Washington USA 98034 Tel (425) 820-4669 Fax (425) 821-3914	ntal, In 100	Č	30	n	ec	LOG	OF BORING AB-19B PAGE 1 OF 1

	DEPTH (it bgs)	GRAPHIC I DC		USCS SYMBOL	Soil de	SCRIPTION	SAMPLE	BLOW COUNT SBT N VALUE	VOLATILE VOLATILE READING (ppm)	GROUNDWATER	FIELD AND LABORATORY TESTING	v	VELL SCHEMATIC
	-			VCC GP- GM ML	0.25 feet of asphalt Medium dense to dense, moi sandy, fine GRAVEL with son Medium stiff, moist, dark brow fine to medium gravel and nu fragments, and charcoal); (Fil	st, gray and brown Intermixed, ne silt mand gray, sandy SILT with merous organics (roots, plant I)		12	0.9				Flüsh Mount Monument Cement Grout Bentonite Chips
	-5-			VIL-	Very soft, saturated, gray and Becomes moist to wet and wil	brown mottled, sandy, SILT		3	1.0	⊻			2/12 Sand
	-		S	йL ГР.– ТМ	Very stiff, moist to wet, gray w sandy SILT with trace fine gra (roots) Medium dense, wet, gray and fine SAND with some silt and i Thin layer of gray medium SA	ith dark oxidation staining, vel and occasional organics brown with oxidation staining, trace fine gravel ND at 6.5 ft bgs		35	0.8	¥	AB20_06		Screen
	-10-		S	P.	Medium dense, wet, gray with medium SAND with some silt a Becomes saturated	orange-brown mottles, fine to and trace fine to coarse gravel		52	1.3				
	-		N		Hard, moist, brown and gray m fine to coarse gravel; (Glacial Becomes gray	ottled, sandy SILT with some Fill)		50/3	0.7				
	-				Becomes with trace fine to coa	rse gravel		50/4	0.9				
ND.GDT 4/7/08	-15 				Exploration terminated at appro existing ground surface (bgs). groundwater. No odor observer Saturated soll observed from 4 groundwater level at 4 feet bgs Consistancy and relative densit Dames & Moore sampler and a counts not converted.	oximately 14.0 feet below the No sheen observed in soil or 1 in soil or groundwater. to 4.5 feet bgs; measured y determined based on a 140 pound hammer. Blow							
ORTLA	BORIN	IG MI	TH	OD:	HSA ELE	VATION REFERENCE: NA		-	_				
AMECF	BORE	HOLE	DV	MET	'ER: 8.25 (in) GRO	UND SURFACE ELEVATION: 385.	89 feet		REMA	aks:			
LT.GPJ	DRILL	RIG: RACT	NA OR:		CAS	ING ELEVATION: 385.37 feet							
ESDMA	LOGG	ED B	r: L	ME	DRIL								
ENVR+WELL BORING	Edma Alder 7-915	onda woc -159	5 Se od 1 182	choc Mail -B	ol District - 2927 Blvd. Lynnwood, WA	AMEC Earth and Environme 11335 NE 122nd Way, Suite Kirkland, Washington USA 98034 Tel (425) 820-4669 Fax (425) 821-3914	ntal, In 100	c.	ЭЛ	n	ec	LOG	G OF BORING AB-20 PAGE 1 OF 1

	DEPTH (it bgs)	GRAPHIC LOG	USCS SYMBOL	SOIL DE	SCRIPTION	SAMPLE	BLOW COUNT SPT M VALUE	VOLATILE READING (ppm)	GROUNDWATER	FIELD AND LABORATORY TESTING	v	VELL SCHEMATIC
			PCC	0.42 feet of concrete	OAND IN							-Flush Mount Monument
	.		Civi					04				
	-		SM	Loose, moist, dark brown with sandy, fine to coarse <u>GRAVE</u> Loose, moist to wet, orange-t with fine to medium gravel; (F Thin layer of moist, black, sith	n oxidation staining, silty, <u>L (Fill)</u> an, silty, fine to coarse SAND fill) y SAND at 1.4 feet bgs		10	0.4	5	AB21_02		- Cement Grout
	-5-		SP- SM SM	Medium dense, molst, red-on fine SAND with slit and trace i Medium dense, molst, orange staining grading to gray with o fine SAND with trace fine gray Thin layer of fine to coarse sa Approximately 0.5 fort this is	ange and rust brown motiled, fine gravel brown with dark oxidation fark oxidation staining, silty, rel and at 3.6 feet bgs		37	0.6	•	AB21_04		-2/12 Sand Screen
	-		SM	feet bas Loose, moist to wet, gray-brow gravel Becomes saturated	wn, slity, fine SAND with trace		22	0.9	Z	a AB21_07		
	-10-		SP- SM	Medium dense, seturated, gra some silt and trace fine to coa	y, fine to medium SAND with rse gravel		40	0.8				PVC Endcap in 2/12 Sand
	_		SM	Dense, moist, gray with scatter fine SAND with trace fine grave	red oxidation staining, silty, el; (Glacial Till)	B	50/3	0.3				- Bentonita Chips
				Becomes gray		Е	50/3	0.7				
GDT 4/7/08				Exploration terminated at appre- existing ground surface (bgs) d sheen observed in soll or groun approximately 9.5 to 10 feet bg Saturated soil observed from 8 groundwater level at 6.4 feet bg Consistancy and relative densi Dames & Moore sampler and a counts not converted.	oximately 12.75 feet below the lue to sampler refusal. No howater. Slight odor from (s. to 10.5 feet bgs; measured gs. ty determined based on a 140 pound hammer. Blow					25	*******	
NO.		1								I		ĺ
Ĕ	-20-L	GMF	THOD:	HSA EIG								
N C F	BORF		DIAME	TER: 8 25 (in) COC		and the set						
W	DBILL	DIC-			NO ELEVATION: 307.	94 I UU			uv9:			
GP.		rug.		GAS	ING ELEVATION: 386.91 test							
ESDM&1	LOGGI	ED BY										
SHWELL BORING	Edmo Alder	onds woo	Scho d Mail	ol District - 2927 Bivd. Lynnwood, WA	AMEC Earth and Environme 11335 NE 122nd Way, Suite 1 Kirkland, Washington USA 96034 Tal. (425) 820-4669	ntal, Ind 100	G.	9N	ne	ec	LOG	OF BORING AB-21
₹(010		-		Fax (425) 821-3914						i	PAGE 1 OF 1

	O DEPTH (ft bgs)	GRADHIC I DC			SOIL DE	SCRIPTION	SAMPLE	BLOW COUNT	VOLATILE READING (ppm)	GROUNDWATER	FIELD AND LABORATORY TESTING	W	ELL SCHEMATIC
				SP- SM ML	Molst, brown, fine to coarse a medium gravel; (Fill) Medium stiff, molst, dark brow with fine to medium gravel ar plant fragments) Approximately 0.2 foot piece Medium stiff, molst, gray with	SAND with silt and fine to wn and tan mottled, sandy SILT ad scattered organics (roots and of chared wood at 1.6 feet bgs oxidation staining, clayey SILT		15	0.8	¥			- Flush Mount Monument - Cement Grout - Bentonite Chips
	5-			ML	Stiff to very stiff, molst, gray v SILT with fine sand and trace Stiff to very stiff, molst, gray v oxidation staining, SILT with a	vith oxidation staining, clayey fine gravel vith brown mottles and clay		35	0.7	☑	AB22_05		
				SP SM ML	Medium dense, saturated, gr Medium dense, saturated, br oxidation staining, silty fine Si occasional organics (roots) Very stiff, moist, gray and bro staining, sandy SILT with fine Medium dense, saturated, silt trace fine gravel	ay, fine to coarse SAND with gray motifies and AND with trace fine gravel and with motified with oxidation gravel y, fine to medium SAND with		70 45	0.5		AB22_55		— 2/12 Sand Screen
11			S	SP T SM T SM T	Dense, saturated, brown-gray trace silt and fine to medium g Dense, wet, brown and gray n silty fine SAND with trace fine Dense, wet, brown-gray with o SAND with fine to medium gray	, fine to medium SAND with provel actiles with oxidation staining, <u>gravel</u> oxidation staining, silty fine wel; (Glacial Till)		50/6	0.8				
			SS	P- M	Dense, wet to saturated, brown with silt and trace fine to mediu	n-gray, fine to coarse SAND Im grave!; (Glacial Till)		50/4 50/6	0.7				- PVC Endcap in 2/12 Sand - Bentonite Chips
-15			S	M	Dense, wet, brown and gray m sitty, fine SAND with trace fine	ottled with oxidation staining, gravel (Glacial Till)	E	50/5	0.6				
		-			existing ground surface (bgs) d sheen observed in soil or groun in soil or groundwater. Saturated soil observed from 5 bgs; measured groundwater ler Consistancy and relative densil Dames & Moore sampler and a counts not converted.	oximately 14.9 feet below the lue to sampler refusal. No ndwater. No sheen observed .7 to 6.5 and 7.7 to 9.5 feet vel at 5.7 feet bgs. ty determined based on a 140 pound hammer. Blow							
-20- BOF	UNG) ME	TH	OD:	HSA ELE	VATION REFERENCE: NA		\neg					
BOF DRII CON	WREHOLE DIAMETER: 8.25 (In) GROUND SURFACE ELEVATION: 388.13 feet REMARKS: ULL RIG: NA CASING ELEVATION: 387.30 feet START CARD/TAG ID: /BAB 055 WITRACTOR: Cascada Drilling START CARD/TAG ID: /BAB 055 DRILLING DATES: 01/17/2008												
Edr Ald 7-91	noi ervi 15-'	nds /00 159	S (choc Mali -B	ol District - 2927 Blvd. Lynnwood, WA	AMEC Earth and Environmen 11335 NE 122nd Way, Suite 1 Kirkland, Washington USA 98034 Tel (425) 820-4669 Fax (425) 821-3914	tal, ind 00	C.	ЭЛ	ne	ec [©]	LOG	OF BORING AB-22 AGE 1 OF 1

- F				- 1			1	_	-					
	O DEPTH (ft bgs)	GRAPHIC LOG	ISCA EVIDA		SOIL D	DESCRIPTION	SAMPLE	BLOW COUNT	SPT N VALUE VOLATILE	GROUNDWATER	FIELD AND LABORATORY TESTING		WELL SCHEMATIC	
			MI SP SP ML SP SP SP ML SP SP ML SP SP	C Afe Vis Afe Vis Afe Cob	1.5 feet of concrete Very stiff, molst, gray with d SILT with trace fine to medi Very stiff to medium dense, / silty, fine SAND with trace Very stiff, molst, gray with s with trace to some fine sand Medium dense, moist to wet Dense, wet to saturated, gray trace silt Medium dense, wet, gray, int SILT with fine sand, and sam nedium grave! Medium dense, moist, gray, so medium grave! Addium dense, moist to wet, brown AND with fine to medium gray ary dense, moist to wet, brown ary dense, moist brown with ary dense, moist brown ary dense, moist brown ary dense, brown ary dense, moist brown ary dens	ark oxidation staining, sandy <u>um gravel</u> rolst to wet, brown, sandy SiLT gravel cattered oxidation staining, SiLT and trace fine to medium gravel , gray, fine SAND with silt y, fine to medium SAND with erbedded fine SAND with silt, dy SILT, with trace fine to solution staining state of the silt, dy SILT, with trace fine to with silt, silty, fine SAND with silt, dy SILT, with trace fine ne to medium SAND at 11.5 and gray motiled, silty, fine wel wel we to sempler refusal. Sheen to 8 feet bgs. Odor observed to 8 feet bgs. Odor observed to 8 feet bgs. measured by determined based on a 140 pound hammer. Bjow VATION REFERENCE: NA SUND SURFACE ELEVATION: 387.34		34 36 50/6 38 42 50/4 50/4	0.9 1.2 0.5 0.3 0.7	✓ ✓	AB23_04		PVC Endcap in 2/12 Sand	
OG	GED	BY:	GE Line	scat	Drilling STA	RT CARD/TAG ID: /BAB 053 LING DATES: 01/16/2008 - 01/16/200	ng.							
:dm Jde -91	iono iwo 5-15	is S Iod 1982	icho Mali 2-B	ol D Bh	District - 2927 vd. Lynnwood, WA	11335 NE 122nd Way, Suite 10 Kirkland, Washington USA 98034 Tel (425) 820-4669 Fax (425) 821-3914	au, inc.)0	ĉ	30	76	CO.	LOC	G OF BORING AB-23	
	_	-				· ··· (****) 021-3914							PAGE 1 OF 1	

PAGE 1 OF 1

1)15

11¢

46

f

191.00

a survey

a server a

- 2 C - 1

-

N No.

ECC	VA	Cor	ро	ratio	n			B	oring Number M	<u>W1 (P1)</u>
Client	Edi	ng LQ Monde	ig Sat	ool Di	strict	Detris	na Company	Uall Comtan	•Date Drilled 3/3	9/93
Site	Tro	nsport	atio	n Cent	er	Bari	ng Company no Method		. Coordinates	<u>N</u>
Job N	umbe	er	. 11-	17		Tota	l Depth	20'	Cround Elevation	E
Field	Geolo	gist	An	nie Suc	101	Wote	ar Depth	Approximately 9'	Sheetof_1	
Depth (Feet)	Blow	Sample No.	Recover	Organic+ Vapor (ppm)	E *	×0 [×]		Sample Descripti	ion	Grophic Log
			F				Aspholt -	- 4 [#]		77777
	- 5	P12.5	100	1.1						
	٥ ا	2,5-4	1.00	V			CLAY (CL)	stiff grovelly, song	ly, tan with iron	
5 _	<u> </u>						staining	t		
_	- š	P1-7.5	100	1.3			CLAY, (CL)	stiff, gravelly, sandy,	tan with iron	
							Stoil	ning, slight sheen Indwater 9—10'	2	
	- 3							mendeter s-16		
	10	PI - 12.5 12.5-14.0	100	0.8	[SAND (SC)) – fine to medium g clay leases, blue-ocay	roined, minór gravel	
					1			erey remotes ender gray	, not not acquiring	
15										
•							Slight shee	en an wet soil from fl	ights	
							as onders	are raised during well	installation	
20	1									
								Installed Monitoring	Well	HREHE
1 -			Ì							
	11									
	<u> </u>		-+-							
								*		
									[
			T							
-										
					F		*			
	T									
									2	
			+-							
				ļ						
		ŀ								
1147-4-001.0										

A COLORA

é.,

)

-

•

			Cor	00	ratio	0					
		l v M Bari		po va	iuuu	11			8	oring Number	<u> </u>
	Soll	500	ng cu monde	يم امک	and Di	nteint	Deilli	an Como anos	14.11 8 101	Dote Drilled	3/9/93
j	Client	Tee	nongs	atte	n Cent	ar	Bosh	ng Company	Holt Drilling	. Coordinates	N
		<u>umba</u>	insport	11	17	.er	Toto		<u>HSA - 8-1/2"</u>	. ,	E
		Caolo	न जाना	<u></u>	te Ru		Hold Wold		20 Feet	Ground Elevati	ion
	Flerd		yiat	T	116 200		T TRAIL	r Deptn	9	Sheet _1_of.	1
	f (j		be la	Į	ië S E			-	Samola Descripti		(Combine)
	La L	6		Ŭ Č	l de à	*9	NO		southie peacetist	INFE	Graphic
			N V	<u> «</u>	0-0						Log
ŀ		+		+				Concrete	. P"		
],							- 0		
		-17	P2-2.5	100	0.8			Clay (CL)	(stiff), graveliv, sandy	blue-oray ican	
		-	10 - 40					stain	ing	t more di chi il di	
	э —		<u> </u>								
		- 8-	P2-7.5	100	6.8			Clay (CL)	gravelly, sandy, blue	-grey, iron	
- 1	10	1						X. stant	g, minor amounts of sheen	angular shale ch	aqis aqis
	· · · ·							Grou	ndwater 9.0'		
		- t	2-22.5	100	NA	Í		Sand (SC), fin	e— to medium-graine	d, cloyey, grovel	
		1 -						bluegrey, 1	of orange mottling (iron staining)	
	15							e	TD 14 Feet		
			ļ	1				Boring area	ited with hole olug (a	rapular	
	_	1						bentonite -	- 6 bogs) and water	to the surface	
	20			_							
											1 1
					f f						
		-+-		┈┼╴							
	•			+							
blion											
504											
8											[
		-		1							1
5 4						•					
2											
1147-	A-002.0			-							

ħ,

	FCO		Cor	00	ratio	n					
	Soil	rza Larín		pu	i u tiu	re e			В	oring Number _	<u>P-3</u>
	Sull u	C.J.	iy co	y G-b		- 1 - 1 - 1				Date Drilled <u>3/1</u>	/93
	Client	<u>2,0/</u>	nonos	SCR		strict	Urri	ng Company	Holt Drilling	_ Coordinates	N
	Sile	100	nsport	atio	n Cent	er	Bori	ng Method	<u>HSA ~ 8-1/2"</u>	•	E
	JOD NU	mbe	۳ 	114	17		Toto	l Depth		Ground Elevation	
	Field G	Polo	gisl	An	<u>nie Suc</u>		Wate	er Depth	10'	Sheet _1_of_1	
	E 2				[<u>.</u>						1
	e a			1 S		жd	NON		Sample Descript	ion	Graphic
	0 U	l a c a	S S Z		8899						Log
				1ª							<u> </u>]
								Concrete -	- 8"		ERNHA
- (2				1					
- [_	7	P3-2.5 2.5-4.0	10	0.8			Sand (SC), 1	medium— to fine—grai	ned, clavey, aravelly	
	5							with root	and plant fragments	(possible	
	J							riit moter	(di)		
		2									HEHEEH
		Ŧ	PJ-7.5	100	0.8	1		Clay (CL),	Sandy, grey with ora	nge mottling	
					([- •	
	10							Grou	indwater 10.0'		
		유				1		Sand (SD)	fina- ta pagita are		NHEERI
		11		20	av .			June (Jr.)	, inter to coorserigro	inea, gravelly, wet	
								<u> </u>	TD 14 Feet		
	15										
1						1		Soring grou	uted with hole plug (a	ranulac	
								bentonite -	- 5 bags) and water	to the surface	
					·						
	20										
E					T						
		ŀ								1	
		-+		+							
1											
		1				ĺ.					
					1						
ļ											
Ł									•	[
									1		
Ł											
F											
	· .			+							
					-					9	
								5			
								8			
		+-		+							ſ
									•		
10.275			and the second second	1		and the second s	and see it				

1992 ECOVA Corporation

ĺ

j

Í

J.C

									1-4:			
E(COV	A/	Corc	or	otio	n		Boring Number	Part			
Sc	Soil Boring Log							Date Drilled 3	Date Drilled 3/9/93			
Clin	Client Edmonds School District						Drilli	ng Company Holt Drilling Coordinates	N			
Sit	Site Transportation Center					er	Borir	Method HSA - 8-1/2"	E.			
. lot	Job Number 1147						Tota	Depth 9' Ground Elevation				
Fia	Field Geologist Aroje Sugar						Wate	Water Depth 8' Sheet 1 of 1				
Depth	(Feet)	Blow Counts	Somple No.	Recover	Organic Vapor (ppm)	정말	кол	Sample Description	Graphic Log			
								Applied by A th	NRRET			
5		13 5	P5-2.5 2.5-4.0	100	0.2			Sond (SC), fine- to medium-grained, sitty, claye grey/green	y.			
		50	P4-74	50	0.2			Sand (SC), silty, claysy, grey-green				
10			7.3-9.0					8.5' - Sill (ML), very hard (50 blows/6") with grave	•/			
								Boring grouted with hole plug (granular bentonite — 4 bags) and water to the surface				
15												
20												
								¥				
_												
ation												
2												
3												
Š.												
ŭ N						•						
199												
1147-/	A-004.	0										

۱. ____

ø

											-*	. R. 6 5	
			7Δ	Corr	201	ratio	n				Boring Number		
		Soil Baring Log									Date Orliged		
	Clie	Client Edmonds School District				strict	Drilling Company		Holt Drilling		N		
	Sit	Site Transportation Center					er	Boring Method		HSA - 8-1/2		E	
	Job Number 1147					7		Total Depth		19'		ion	
	Fie	Field Geologist Arnie Sugar			Water Depth		Not Encountered	Sheetof					
	Deoth	(Feet)	Blow Count=	Sample No.	Recover X	Organic+ Vapor (ppm)	жЩ	×o	•	Sample Descri	iption	Graphic Log	
					+				Aspholt -	4."			
				P8-2.5 2.5-4.0	100	0.2			Clay (CL) (hard), Silt (ML), gravely, grey with ora	(hard), gravelly, blu	le⊸âtéeu		
	5		10173	P8-7.5	100	1,9				gravelly, sandy, cla with orange mottlin	yey, hard 9		
	10								Silt (ML).	minor gravel, grey,	hard, dry		
	15		18	P8-12.5	50	1.3			ML very h	ard - 50 blows/4"			
			<u>50</u>	P8-17.5 17.5-19	30	0.8			ML very h	ard 50 blows/5" TD 19 Fee	t		
	20								Bore, hole gr (granular benta	ouled to the surfa nite - 8 bags and s	ce with hole plug rater to the surface)	
									12				
										*	75		
										,			
ration	42										(*)		
WA Corpoi													
1992 ECC													
1	147-4	004.0	C		T								

1

1 7 (4)

APPENDIX C Report Limitations and Guidelines for Use

APPENDIX C REPORT LIMITATIONS AND GUIDELINES FOR USE¹

This appendix provides information to help you manage your risks with respect to the use of this report.

Geotechnical Services Are Performed for Specific Purposes, Persons and Projects

This report has been prepared for the exclusive use of the Wolff Enterprises II, LLC. This report is not intended for use by others, and the information contained herein is not applicable to other sites.

GeoEngineers structures our services to meet the specific needs of our clients. For example, a geotechnical or geologic study conducted for a civil engineer or architect may not fulfill the needs of a construction contractor or even another civil engineer or architect that are involved in the same project. Because each geotechnical or geologic study is unique, each geotechnical engineering or geologic report is unique, prepared solely for the specific client and project site. Our report is prepared for the exclusive use of our Client. No other party may rely on the product of our services unless we agree in advance to such reliance in writing. This is to provide our firm with reasonable protection against open-ended liability claims by third parties with whom there would otherwise be no contractual limits to their actions. Within the limitations of scope, schedule and budget, our services have been executed in accordance with our Agreement with the Client and generally accepted geotechnical practices in this area at the time this report was prepared. This report should not be applied for any purpose or project except the one originally contemplated.

A Geotechnical Engineering or Geologic Report Is Based on a Unique Set of Project-specific Factors

This report has been prepared for the 2927 Alderwood Mall Blvd project in Lynnwood, Washington. GeoEngineers considered a number of unique, project-specific factors when establishing the scope of services for this project and report. Unless GeoEngineers specifically indicates otherwise, do not rely on this report if it was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

For example, changes that can affect the applicability of this report include those that affect:

- the function of the proposed structure;
- elevation, configuration, location, orientation or weight of the proposed structure;
- composition of the design team; or
- project ownership.

¹ Developed based on material provided by ASFE, Professional Firms Practicing in the Geosciences; www.asfe.org .

If important changes are made after the date of this report, GeoEngineers should be given the opportunity to review our interpretations and recommendations and provide written modifications or confirmation, as appropriate.

Subsurface Conditions Can Change

This geotechnical or geologic report is based on conditions that existed at the time the study was performed. The findings and conclusions of this report may be affected by the passage of time, by manmade events such as construction on or adjacent to the site, or by natural events such as floods, earthquakes, slope instability or groundwater fluctuations. Always contact GeoEngineers before applying a report to determine if it remains applicable.

Most Geotechnical and Geologic Findings Are Professional Opinions

Our interpretations of subsurface conditions are based on field observations from widely spaced sampling locations at the site. Site exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. GeoEngineers reviewed field and laboratory data and then applied our professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ, sometimes significantly, from those indicated in this report. Our report, conclusions and interpretations should not be construed as a warranty of the subsurface conditions.

Geotechnical Engineering Report Recommendations Are Not Final

Do not over-rely on the preliminary construction recommendations included in this report. These recommendations are not final, because they were developed principally from GeoEngineers' professional judgment and opinion. GeoEngineers' recommendations can be finalized only by observing actual subsurface conditions revealed during construction. GeoEngineers cannot assume responsibility or liability for this report's recommendations if we do not perform construction observation.

Sufficient monitoring, testing and consultation by GeoEngineers should be provided during construction to confirm that the conditions encountered are consistent with those indicated by the explorations, to provide recommendations for design changes should the conditions revealed during the work differ from those anticipated, and to evaluate whether or not earthwork activities are completed in accordance with our recommendations. Retaining GeoEngineers for construction observation for this project is the most effective method of managing the risks associated with unanticipated conditions.

A Geotechnical Engineering or Geologic Report Could Be Subject to Misinterpretation

Misinterpretation of this report by other design team members can result in costly problems. You could lower that risk by having GeoEngineers confer with appropriate members of the design team after submitting the report. Also retain GeoEngineers to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering or geologic report. Reduce that risk by having GeoEngineers participate in pre-bid and preconstruction conferences, and by providing construction observation.

Do Not Redraw the Exploration Logs

Geotechnical engineers and geologists prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering or geologic report should never be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, but recognize that separating logs from the report can elevate risk.

Give Contractors a Complete Report and Guidance

Some owners and design professionals believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering or geologic report, but preface it with a clearly written letter of transmittal. In that letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with GeoEngineers and/or to conduct additional study to obtain the specific types of information they need or prefer. A pre-bid conference can also be valuable. Be sure contractors have sufficient time to perform additional study. Only then might an owner be in a position to give contractors the best information available, while requiring them to at least share the financial responsibilities stemming from unanticipated conditions. Further, a contingency for unanticipated conditions should be included in your project budget and schedule.

Contractors Are Responsible for Site Safety on Their Own Construction Projects

Our geotechnical recommendations are not intended to direct the contractor's procedures, methods, schedule or management of the work site. The contractor is solely responsible for job site safety and for managing construction operations to minimize risks to on-site personnel and to adjacent properties.

Read These Provisions Closely

Some clients, design professionals and contractors may not recognize that the geoscience practices (geotechnical engineering or geology) are far less exact than other engineering and natural science disciplines. This lack of understanding can create unrealistic expectations that could lead to disappointments, claims and disputes. GeoEngineers includes these explanatory "limitations" provisions in our reports to help reduce such risks. Please confer with GeoEngineers if you are unclear how these "Report Limitations and Guidelines for Use" apply to your project or site.

Geotechnical, Geologic and Environmental Reports Should Not Be Interchanged

The equipment, techniques and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical or geologic study and vice versa. For that reason, a geotechnical engineering or geologic report does not usually relate any environmental findings, conclusions or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Similarly, environmental reports are not used to address geotechnical or geologic concerns regarding a specific project.

Biological Pollutants

GeoEngineers' Scope of Work specifically excludes the investigation, detection, prevention or assessment of the presence of Biological Pollutants. Accordingly, this report does not include any interpretations, recommendations, findings, or conclusions regarding the detecting, assessing, preventing or abating of Biological Pollutants and no conclusions or inferences should be drawn regarding Biological Pollutants, as they may relate to this project. The term "Biological Pollutants" includes, but is not limited to, molds, fungi, spores, bacteria, and viruses, and/or any of their byproducts.

If Client desires these specialized services, they should be obtained from a consultant who offers services in this specialized field.

Have we delivered World Class Client Service? Please let us know by visiting **www.geoengineers.com/feedback**.

